
ABSTRACTIONS AND STRATEGIES FOR

ADAPTIVE PROGRAMMING

by

Saurav Muralidharan

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2016

Copyright c© Saurav Muralidharan 2016

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Saurav Muralidharan

has been approved by the following supervisory committee members:

Mary W. Hall , Chair 05/16/2016

Date Approved

Ganesh Gopalakrishnan , Member 05/16/2016

Date Approved

Matt Flatt , Member 05/16/2016

Date Approved

Matthew Brendon Might , Member 05/16/2016

Date Approved

Michael Garland , Member 05/19/2016

Date Approved

and by Ross T. Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Emerging trends such as growing architectural diversity and increased emphasis on

energy and power efficiency motivate the need for code that adapts to its execution context

(input dataset and target architecture). Unfortunately, writing such code remains difficult,

and is typically attempted only by a small group of motivated expert programmers who are

highly knowledgeable about the relationship between software and its hardware mapping.

In this dissertation, we introduce novel abstractions and techniques based on automatic

performance tuning that enable both experts and nonexperts (application developers) to

produce adaptive code.

We present two new frameworks for adaptive programming: Nitro and Surge. Nitro

enables expert programmers to specify code variants, or alternative implementations of the

same computation, together with meta-information for selecting among them. It then utilizes

supervised classification to select an optimal code variant at runtime based on characteristics

of the execution context. Surge, on the other hand, provides a high-level nested data-

parallel programming interface for application developers to specify computations. It then

employs a two-level mechanism to automatically generate code variants and then tunes them

using Nitro. The resulting code performs on par with or better than handcrafted reference

implementations on both CPUs and GPUs.

In addition to abstractions for expressing code variants, this dissertation also presents

novel strategies for adaptively tuning them. First, we introduce a technique for dynamically

selecting an optimal code variant at runtime based on characteristics of the input dataset.

On five high-performance GPU applications, variants tuned using this strategy achieve over

93% of the performance of variants selected through exhaustive search. Next, we present

a novel approach based on multitask learning to develop a code variant selection model

on a target architecture from training on different source architectures. We evaluate this

approach on a set of six benchmark applications and a collection of six NVIDIA GPUs from

three distinct architecture generations. Finally, we implement support for combined code

variant and frequency selection based on multiple objectives, including power and energy ef-

ficiency. Using this strategy, we construct a GPU sorting implementation that provides im-

proved energy and power efficiency with less than a proportional drop in sorting throughput.

iv

To my parents and wife.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xiii

CHAPTERS

1. INTRODUCTION . 1
1.1 Abstractions for Adaptive Programming . 1

1.1.1 Supporting Expert Programmers . 2
1.1.2 Supporting Application Developers . 2

1.2 Adaptive Code Variant Selection. 2
1.2.1 Input Adaptivity . 3
1.2.2 Architecture Adaptivity . 4
1.2.3 Multiobjective Tuning . 5

1.3 Contributions . 6
1.4 Dissertation Roadmap . 7

2. INPUT-ADAPTIVE TUNING . 8
2.1 Automating Code Variant Selection . 8

2.1.1 Nitro System Overview . 10
2.1.2 Nitro Library Constructs . 10
2.1.3 Nitro Autotuner Interface . 15

2.2 The Nitro Autotuner . 17
2.2.1 Building a Model for Variant Selection . 17
2.2.2 Incremental Tuning to Reduce Training Inputs 17
2.2.3 Optimizing Feature and Constraint Evaluation 18

2.3 Benchmarks . 18
2.3.1 Sparse Matrix-Vector Multiplication (SpMV) . 19
2.3.2 Linear Solvers and Preconditioners . 20
2.3.3 Breadth-First Search (BFS) . 20
2.3.4 Histogram . 20
2.3.5 Sort . 21

2.4 Results . 21
2.4.1 Variant Selection . 22
2.4.2 Training Time Reduction . 24
2.4.3 Feature Evaluation Overhead . 25

2.5 Summary . 26

3. ARCHITECTURE-ADAPTIVE TUNING . 27
3.1 System Overview . 27
3.2 Tuning Process . 30

3.2.1 Model Construction Using MTL . 31
3.2.2 Utilizing the Full Set of Device Features . 31
3.2.3 Profile Device Feature Selection (P-DFS) . 32
3.2.4 Cross-Validation Device Feature Selection (CV-DFS) 34

3.3 Implementation . 36
3.4 Benchmarks . 37

3.4.1 Histogram . 37
3.4.2 Sparse Matrix-Vector Multiplication (SpMV) . 37
3.4.3 Sort . 39
3.4.4 Breadth-First Search (BFS) . 39
3.4.5 Linear Solvers and Preconditioners . 39
3.4.6 Matrix Transposition . 40

3.5 Results . 40
3.5.1 Architecture Sensitivity of Benchmarks . 40
3.5.2 Prediction Performance . 44
3.5.3 Device Feature Selection Overhead . 47
3.5.4 Results Summary . 47

3.6 Summary . 47

4. TUNING FOR ENERGY AND POWER EFFICIENCY 49
4.1 Multiobjective Tuning in Nitro . 49

4.1.1 Extensions to Autotuning Interface . 50
4.1.2 Combining Code Variant and Frequency Selection 50

4.2 Energy and Power-Efficient GPU Sorting . 51
4.2.1 Aggregated Metrics for Sorting . 51

4.3 Experimental Methodology . 52
4.3.1 Target Architectures . 52
4.3.2 Input Data . 53

4.4 Experimental Results . 53
4.5 Summary . 55

5. A TUNABLE PROGRAMMING SYSTEM . 60
5.1 Programming Interface . 61
5.2 Code Generation and Autotuning . 63

5.2.1 Computation Analysis . 63
5.2.2 Schedule Enumeration . 64
5.2.3 Policy Enumeration . 67
5.2.4 Autotuning . 68

5.3 Translation to Target-Specific Code . 70
5.3.1 Targeting New Architectures . 71
5.3.2 Operator Fusion . 72

5.4 Benchmarks . 72
5.4.1 Reduction and Scan . 72
5.4.2 Sparse Matrix-Vector Multiplication (SpMV) . 73
5.4.3 K-Means Clustering . 74
5.4.4 Co-design Molecular Dynamics Proxy (CoMD) 75

vii

5.5 Evaluation . 77
5.5.1 Methodology and Hardware Platforms . 77
5.5.2 Performance Results . 78
5.5.3 Productivity Gains . 81

5.6 Summary . 81

6. RELATED WORK . 82
6.1 Autotuning for Adaptive Programming . 82

6.1.1 Parameter and Domain-Specific Autotuning . 82
6.1.2 Code Variant Tuning . 83
6.1.3 Architecture-Adaptive Tuning . 83
6.1.4 Energy and Power Efficiency Tuning on GPUs . 84

6.2 High-Level Parallel Programming Systems . 84
6.2.1 Nested Data-Parallelism . 84
6.2.2 Decoupling Computation and Implementation . 85
6.2.3 Programming Models Supporting Autotuning . 86

6.3 Summary . 86

7. CONCLUSIONS AND FUTURE RESEARCH . 87
7.1 Contributions . 87
7.2 Future Work . 88

7.2.1 Support for Tunable Parameters . 88
7.2.2 Tuning Approximate Computations . 90
7.2.3 Extensions to Surge . 90

7.3 Summary . 91

REFERENCES . 92

viii

LIST OF FIGURES

1.1 Performance of SpMV code variants on the NVIDIA GeForce GTX 480 GPU. 3

1.2 Histogram performance on the GeForce 750 Ti when trained on other archi-
tectures. The tuned line shows the performance of our strategy when trained
using data from all architectures other than 750 Ti. 5

1.3 Overview of the contributions of this dissertation. 6

2.1 Overview of the Nitro system. (a) The production version of the library/appli-
cation. The C++ library is used to define variants, features, and constraints.
Calling the variant evaluates the input features at runtime and queries the
accompanying model to select the right variant to execute for a given input.
(b) The offline autotuning process. User provides a tuning script and training
inputs. The autotuner runs the application/library for each training input and
collects training data. The classifier is then consulted with the training data
to construct the model(s). 11

2.2 Example Nitro Library interface for SpMV. 13

2.3 Example Nitro Autotuner interface for SpMV. 16

2.4 Performance variation among variants. 22

2.5 Performance comparison across all test inputs. 23

2.6 Convergence for active learning training heuristic. 25

2.7 Performance variation as features with higher evaluation overhead are added
incrementally. 26

3.1 Comparison of input-adaptive tuning in Nitro with architecture-adaptive tun-
ing. When tuning across architectures, values of the device features selected
through DFS are obtained on both the source (during model construction) and
target (during deployment). These are then concatenated with feature values
of the relevant input data point (‘+’ operator in the figure). 28

3.2 Architecture-sensitivity of each benchmark. The y-axis represents the percent-
age of test inputs for which at least one architecture selects a different best
variant than the others. 41

3.3 Architecture-sensitivity within GPUs of the same generation. 41

3.4 Device feature selection performance. 44

3.5 Device feature selection performance for Histogram on a restricted set of ar-
chitectures. 46

4.1 Variation in throughput (keys sorted per second), energy efficiency (keys sorted
per Joule), and maximum power draw of code variants as frequency increases.
Results are for an input sequence of 10M elements, long datatype and uniform

distribution on the Jetson TK1. 54

4.2 Distribution of frequencies selected via exhaustive search on the Jetson TK1
(top) and Tesla K80 (bottom) for various optimization objectives. 54

4.3 Throughput (top), energy efficiency (middle), and maximum power (bottom)
on the Jetson TK1 for radix and merge sort, and for variants selected for
each optimization objective. Values are normalized with respect to radix sort.
Inputs are of type 〈int, uniform〉. 56

4.4 Throughput (top), energy efficiency (middle), and maximum power (bottom)
on the Tesla K80 for radix and merge sort, and for variants selected for each
optimization objective. Values are normalized with respect to radix sort.
Inputs are of type 〈int, uniform〉. 57

5.1 Overview of the Surge code generator. 64

5.2 SpMV schedule construction and rewriting. 66

5.3 How various SpMV schedules may be implemented in CUDA. In this example,
the input matrix (gray boxes) has 12 nonzeros (blue boxes) and 3 rows. 66

5.4 Overview of the Surge framework and its interaction with Nitro. 70

5.5 Reduction, Scan and SpMV Performance on CUDA and OpenMP. 78

5.6 K-Means Performance on CUDA and OpenMP. 79

5.7 CoMD Performance on CUDA and OpenMP. 79

x

LIST OF TABLES

2.1 List of functions provided by Nitro for variant, feature, and constraint man-
agement . 12

2.2 Configuration options in the Nitro Autotuner interface. 16

2.3 A brief description of variants and list of features used for each benchmark.
The last column lists the sizes of training and testing sets. 19

3.1 Values of GPU device features for 6 architectures. 29

3.2 Cosine similarity between architectures for Histogram (H) and SpMV (S). Val-
ues closer to +1 indicate similarity, while values closer to -1 indicate dissimilarity. 30

3.3 GPU application proxies with corresponding profiling metrics and device features. 33

3.4 Variants and features used for each benchmark. The last column lists the sizes
of training and testing sets. 38

3.5 Variant selection histograms across different benchmarks and architectures.
Each subtable represents the distribution of variant selections across test data
for a particular benchmark. 42

3.6 Best device features for each benchmark, proxies predicted by P-DFS, and the
best features chosen by CV-DFS. 43

3.7 Device feature selection overhead (time in seconds). 47

4.1 Throughput (T), energy efficiency (E) and maximum power draw (P) for the
variants and frequencies selected by the constructed models with respect to
fixed radix and merge sort (at highest frequencies). Values are averaged over
all test inputs. 58

5.1 Current data-parallel operators in Surge. Parameters in square brackets are
optional. 62

5.2 List of Surge schedules. 65

5.3 Schedule lookup table for Surge operators. 66

5.4 List of tunable parameters. 67

5.5 Inferred parameters for each SpMV schedule. The subscripts denote nesting
depths. 69

5.6 List of benchmarks with description, their core computation(s) and details
about reference implementations. 72

5.7 Features used, number of training and test inputs, size of search space, and
number of variants for each benchmark. 78

5.8 Average speedups over GPU and CPU reference implementations, and source
lines of code (SLOC) required for Surge, and GPU and CPU reference imple-
mentations. 80

xii

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Prof. Mary Hall, for her support and guidance

throughout the course of my Ph.D. She has taught me most of what I know about research

and technical writing, and I am confident that the skills I have learned from her will serve

me well throughout my career.

I am thankful to my Ph.D. committee members, Prof. Ganesh Gopalakrishnan, Prof. Matt-

hew Flatt, Prof. Matthew Might, and Dr. Michael Garland for their guidance and the many

productive discussions we’ve had. I’d like to especially thank Michael for supervising a

number of my research projects over the span of four years; I have benefited immensely from

his feedback and guidance. I would also like to thank Prof. Hari Sundar for his help with

the multiobjective tuning project.

My current and past labmates in the CTOP group, Anand, Protonu, Axel, Suchit, Manu,

Amit, Tharindu, Khalid, Huihui, and Tuowen, have been good friends and collaborators. I

would like to thank Manu and Amit in particular for their immense help with preparing my

publications.

I spent two wonderful summers at NVIDIA Research, and would like to thank the various

colleagues and friends I had there, including Bryan, Albert and Duane for their mentorship

and help with the Surge project.

I’d like to thank the many friends I made in Salt Lake City, especially Arijit, Suchit,

Anand, Nil, Nikhil, Prasanna, Sriram, Shreyas, Sharath, Manju, Meghana, Anusua, and

Piyush for making my Ph.D. years fun and memorable.

I am grateful to Ann, Karen, and the School of Computing front desk staff for helping me

out with various administrative tasks related to my Ph.D. and international student status;

they have always been ready to help whenever I needed them.

Finally, I would like to thank my parents and wife for their unconditional support, love,

and patience. They have made a number of sacrifices to help me get through my Ph.D.

years smoothly, and I will be forever grateful to them.

This work was funded by Defense Advanced Research Projects Agency (DARPA) con-

tract HR0011-13-3-0001.

CHAPTER 1

INTRODUCTION

With parallel architectures becoming increasingly complex and diverse, and energy and

power efficiency also gaining importance, programmers are forced to continuously rewrite

and reoptimize code as architectures and optimization objectives change. Unfortunately, this

manual approach is time consuming, demands considerable knowledge of low-level architec-

tural details, and is likely not portable. Instead, we believe that code targeting current and

future parallel architectures must have the ability to intelligently and automatically adapt

to changing execution contexts (input dataset and target architecture); additionally, it must

meet multiple, possibly conflicting, higher level optimization objectives such as performance

and energy/power efficiency.

A number of approaches for writing adaptive code, targeting various programmer exper-

tise levels, have been proposed in the literature. High-level domain-specific programming

systems such as Halide [1] and Elixir [2] decouple the specification of computations from their

low-level implementations. This enables optimized implementations to be generated auto-

matically, letting users focus on the computation itself. At the other end of the spectrum,

there are new techniques and frameworks for automatic performance tuning (autotuning, for

short) targeting expert programmers [3]–[6]. Such systems lift some of the burden off expert

programmers, who can now focus on writing high-performance implementations, as opposed

to spending effort on making the code adaptive.

In this dissertation, we present a cohesive framework for writing adaptive code that

provides suitable abstractions for both experts and application developers, and incorporates

a host of novel techniques for handling input adaptivity, architecture adaptivity, and multi-

objectivity.

1.1 Abstractions for Adaptive Programming
Adaptive programming is the process of writing code that intelligently adapts to changing

execution contexts and optimization objectives. A commonly employed mechanism in

2

adaptive programming is the code variant, which represents a unique implementation of

a computation, among many, that has the same interface and is functionally equivalent to

the other variants but may employ fundamentally different algorithms or implementation

strategies. Given a computation and a set of code variants implementing it, one way of

achieving adaptivity is to select the optimal variant for a given execution context and

optimization objective. However, the question of expressing code variants still remains;

in other words, what is the right level of abstraction for specifying code variants given a

programmer’s expertise? In this section, we study this issue in more detail and outline the

contributions that this dissertation makes to address it.

1.1.1 Supporting Expert Programmers

This class of users demand very high levels of performance, and are highly knowledgeable

about the relationship between software and its hardware mapping. They typically prefer

to write high-performance code variants by hand, and are seeking mechanisms to make

their code adaptive. To support such users, this dissertation introduces Nitro, a new

programmer-directed code variant tuning system. In addition to code variants, Nitro lets

programmers express metainformation for variant selection, such as how to calculate features

or characteristics of the input datasets and target architecture, and representative training

input datasets. Nitro also includes a tuning interface to optionally customize the tuning

process.

1.1.2 Supporting Application Developers

In contrast to expert programmers, application developers prioritize clean, maintainable

code over raw performance. Consequently, low-level abstractions for code variant expression

and tuning are unlikely to be adopted by this group. This dissertation presents Surge, a

nested data-parallel programming system that decouples the high-level specification of com-

putations from their implementation details. This enables Surge to automatically generate

a search space of code variants, which are subsequently tuned using Nitro.

1.2 Adaptive Code Variant Selection.
Once code variants are specified, optimal ones among them must be automatically

selected depending on factors of the execution context. The fact that some of this in-

formation, such as characteristics of the input dataset, is not known until runtime makes

this problem harder. Additionally, the selected variants must meet high-level, possibly

conflicting, optimization objectives such as performance and energy efficiency. In this

3

section, we define input-adaptive, architecture-adaptive, and multiobjective tuning; we also

briefly outline the contributions that this dissertation makes in these areas.

1.2.1 Input Adaptivity

Given a set of code variants implementing a computation, input-adaptive tuning finds the

optimal one corresponding to a given input dataset. While some autotuning systems such as

Sequoia [7] and PetaBricks [8] support input-adaptive code variant tuning, what is missing

from these frameworks is more general metainformation that can be used to select variants,

beyond input dataset size. This presents a particular problem for irregular applications,

such as sparse numerical methods and graph algorithms, and any other applications (e.g.,

sorting) where characteristics of the input dataset may significantly impact selection of the

best code variant, and is not known until runtime. As a motivating example, consider two

GPU sparse matrix-vector multiplication (SpMV) variants from the CUSP library: ELL

and CSR-Vector [9]. Their performance on the NVIDIA GeForce GTX 480 GPU is shown

in Figure 1.1. Here, the x-axis represents number of matrix rows and the y-axis shows

performance in GFLOP/s. As the figure shows, none of the variants is uniformly the best

across all inputs; instead, the best variant changes with input.

One approach to input-adaptive code variant selection is to build a statistical Model that

maps characteristics of the input dataset to the appropriate variant. In this work, we use

supervised learning in an offline training phase to infer a model that maps from features

of the input dataset to variants. The model is then used to select optimized code variants

for new, unseen inputs. We also implement an incremental tuning mode based on active

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

22
05
	

25
59
	

53
57
	

55
63
	

66
91
	

68
33
	

75
98
	

80
32
	

80
34
	

96
69
	

98
00
	

10
24
0	

10
42
9	

10
97
4	

11
44
5	

11
73
0	

11
94
8	

13
68
1	

13
68
1	

13
96
5	

13
99
2	

14
84
2	

15
60
6	

17
36
1	

18
45
4	

19
36
6	

Si
ng
le
	P
re
ci
si
on

	G
FL
O
P/
s	

#	Matrix	Rows	

SpMV	Performance	

CSR-Vector	 ELL	

Figure 1.1: Performance of SpMV code variants on the NVIDIA GeForce GTX 480 GPU.

4

learning [10] for reducing the number of inputs required for training the model.

1.2.2 Architecture Adaptivity
As described above, we rely on a model-based strategy for input-adaptive code variant

selection. These models, however, require retraining every time the software is installed on a

new architecture or if the underlying hardware is upgraded. This training process is typically

very time consuming and heavy on system resources; we are required to evaluate each variant

for each input when collecting the training data. This work evaluates the following question:

Can we develop a methodology to reuse results of training on two or more source architectures

to create a variant selection model for a different target architecture without training on the

target architecture? In other words, can we come up with an input- and architecture-adaptive

code variant selection strategy?

As a motivating example, consider the Histogram operation: it counts the number of

observations that fall into one of a set of disjoint bins. Consider six code variants for

Histogram in the high-performance GPU CUB library [11]. There are two variants that do

not use atomic operations, two that use global memory atomics, and two that use shared

memory atomics. The best variant is therefore architecture-sensitive, based on the relative

performance of atomic operations, and also input-sensitive, e.g., affected by input size and

mean sample distribution.

Figure 1.2 shows performance for Histogram on the GeForce 750 Ti GPU (Maxwell

generation), when using a variant selection model trained on six different GPU architectures.

The x-axis captures results when trained on the corresponding GPU. The y-axis represents

percentage performance achieved by the variant selected by a model with respect to the

best performing variant (exhaustive search), averaged across all inputs in a test dataset.

From the figure, it is clear that while variant selection models trained and tested on the

same architecture perform well (above 95% of exhaustive search), this is not the case when

models trained on architecture X are deployed on architecture Y (X 6= Y), with performance

dropping to as low as 30% of exhaustive in some cases.

While an architecture-specific model yields high performance, the time-consuming train-

ing phase must be repeated for each application and target architecture. In this work, we

instead develop a strategy to automatically construct code variant selection model(s) on a

target architecture using only training data from a set of source architectures specified by the

programmer, together with information that characterizes each architecture. On the target,

no variants are executed during the model construction process, since no training data from

the target are required. Our strategy thus enables the construction of performance-portable

5

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

GTX	480	 C2075	 GTX	770	 K20c	 750	Ti	 GTX	980	

%
	P
er
fo
rm

an
ce
	w
.r.
t.	
Be

st
	

Histogram	Performance	on	GeForce	750	Ti	

Tuned	

Figure 1.2: Histogram performance on the GeForce 750 Ti when trained on other architec-
tures. The tuned line shows the performance of our strategy when trained using data from
all architectures other than 750 Ti.

software that quickly and automatically adapts to both changing inputs and new hardware

architectures. In Figure 1.2, the line labeled ‘Tuned’ shows performance achieved by our

strategy trained on data from every architecture except the 750 Ti.

1.2.3 Multiobjective Tuning

Higher power consumption and associated heat dissipation in HPC systems is forcing a

corresponding increase in operating costs. On the other end of the spectrum, battery life

is increasingly becoming a concern on smaller embedded devices. Optimizing code variants

for power and energy efficiency, while also ensuring minimal degradation in performance,

is thus becoming critically important. One way of achieving this goal is through multi-

objective optimization, which aims to find a set of solutions (in this case, code variants) that

satisfy a set of (possibly conflicting) optimization criteria. Dynamic voltage and frequency

scaling (DVFS) is another approach that has proven effective for reducing energy and power

consumption, especially on GPUs [12], [13]. Given an execution context, the ability to

predict the optimal frequency, in addition to code variant, would thus be useful.

In this work, we present a mechanism for users to define custom aggregated optimiza-

tion metrics. This enables code variant selection based on multiple objectives, such as

performance, energy consumption, etc. Further, we describe techniques for combined 〈code

variant, frequency〉 selection, enabling the use of DVFS to further reduce energy and power

consumption of code variants with minimal performance loss.

6

Source Training Data Code Variants

INPUT-ADAPTIVE	

ARCHITECTURE-ADAPTIVE	

MULTI-OBJECTIVE	

Expert Programmer
Code Variant Tuning (Nitro)

Surge Program

Operator Description
execute(expr, dest, p, [s, tp]) Evaluates expr on hardware platform p and puts results in dest
map(f, s1,..., sn) Produces sequence (f(s1[0], ..., sn[0]), f(s1[1], ..., sn[1]), ...)
reduce(�, s, [p]) Produces a scalar (p � s[0] � s[1] � ...) for a commutative and associative operator �
scan(f, s, [p]) Produces sequence y s.t. y[0] = p and y[i] = f(y[i-1],s[i-1]) for an associative operator

f
gather(s, idx) Produces sequence y s.t. y[i] = s[idx[i]]
range(s, e, stride) Produces sequence with values ranging from s to e with stride stride
replicate(v, len) Synthesizes sequence s of length len s.t. s[i] = v for all i
zip(s1,..., sn) Produces sequence x s.t. x[0] = <s1[0],..., sn[0]>, x[1] = <s1[1],..., sn[1]>,

...
split(s, len) Produces nested sequence x from s s.t. each sub-sequence of x is a tile of s of size len
join(s1,..., sn) Produces sequence X = (<x1,..., xn>i) s.t. x1 2 s1, x2 2 s2, ... & i 2

[0,
Qn

i=1 len(si))
striding(s, stride) Produces strided sequence from s of stride stride
reverse(s) Produces the reversed sequence of s
nest(s, i) Produces nested sequence in CSR format with element sequence s and column indices sequence

i
transpose(s) Produces nested sequence that is the transpose of input nested sequence s

Table 1. List of Surge data-parallel operators. Parameters in square brackets are optional.

1 auto spmv =
2 // Apply dot product across all rows of matrix
3 map([=] __device__ (S row, I indices) {
4 // Gather elements from vector x
5 auto z = gather(x, indices);
6
7 auto mul = [](T x, T y) { return x*y; };
8 auto plus = [](T x, T y) { return x+y; };
9

10 // Element-wise multiplication of x with row
11 auto vector_mul = map(mul, row, z);
12
13 // Sum up elements to obtain dot product
14 return reduce(plus, vector_mul);
15 },
16 s_matrix, s_indices);
17
18 // Realize SpMV computation on CUDA platform
19 execute(spmv, s_result, platform::cuda{});
20
21 blah

Listing 1. Surge code for SpMV. The call to execute realizes the
computation and places the result into the s_result sequence.

3. Generating Platform-Specific Code
The Surge code generator analyzes the computations in a program
and automatically generates valid platform-specific implementa-
tions for them. Figure 2 provides an overview of the process.

3.1 Parameterized Code Generation
Surge decouples high-level specifications from lower-level platform-
specific code using two related concepts: schedules, and policies.
Before describing them, we first formalize a notation for represent-
ing computations. We denote each nested data-parallel computation
as an expression tree E. Each node of E represents a single data-
parallel operator, and given two nodes e and f in E, e is said to be
the parent of f iff. f is nested within e. We denote parenthood us-
ing the . operator. Thus, map.reduce represents a valid expression
tree.

An expression tree is an abstract representation of a computa-
tion and can be implemented in hardware in a number of ways.

AUTOTUNER(Model CODE(GENERATOR(Source Training Data Implementations

Training Inputs

Surge Program

Surge: An Autotuned Nested Data-Parallel
Programming Model for Performance Portability

Blind for review

Abstract
This is the text of the abstract.

Keywords nested data parallelism; performance portability; code
generation; autotuning; input-adaptive; GPU;

1. Introduction
2. Programming Model Overview
Nested data-parallelism has been proven to be a powerful abstrac-
tion for expressing a variety of parallel computations []. However,
most existing NDP programming models map computations to low-
level platform-specific code using fixed strategies (such as flatten-
ing) ??. These are often embedded deep in the model’s compiler
and are difficult to change by users, restricting the model’s ability
to adapt to changing hardware architectures and execution contexts.

Surge is a nested data-parallel programming framework that has
been designed to overcome this limitation. Similar to existing NDP
models, it provides a standard set of nestable data-parallel operators
for expressing computations at a high level. However, Surge com-
putations are decoupled from their implementations through the use
of two first-class language constructs: schedules, and tuning poli-
cies. This is one of the unique features of Surge and it allows users
and/or autotuners to conveniently generate and tune multiple low-
level implementations of the same Surge computation.

Figure ?? provides a high-level overview of the framework. The
Surge parameterized code generator takes in a computation (ex-
pressed using Surge operators) and automatically generates multi-
ple valid implementations, or code variants from it. This is accom-
plished by systematically varying the schedules and tuning poli-
cies associated with the computation. Which code variant to use
depends on several factors including characteristics of the under-
lying architecture, and even the input dataset provided to the com-
putation. To enable intelligent selection of code variants, we have
integrated the Nitro autotuning framework [] into Surge. As shown
in the figure, Nitro generates a machine learning-based model that
selects the optimal code variant at run-time, based on both archi-
tecture and input data characteristics.

NDP Programming Interface Surge provides a set of data-
parallel operators which may be nested within each other. Ta-

[Copyright notice will appear here once ’preprint’ option is removed.]

1 auto spmv =
2 // Apply dot product across all rows of matrix
3 map([=] __device__ (S row, I indices) {
4 // Gather elements from vector x
5 auto z = gather(x, indices);
6
7 auto mul = [](T x, T y) { return x*y; };
8 auto plus = [](T x, T y) { return x+y; };
9

10 // Element-wise multiplication of x with row
11 auto vector_mul = map(mul, row, z);
12
13 // Sum up elements to obtain dot product
14 return reduce(plus, vector_mul);
15 },
16 s_matrix, s_indices);
17
18 // Realize SpMV computation on CUDA platform
19 eval(spmv, s_result, platform::cuda{});
20
21 blah

Listing 1. Surge code for SpMV. The call to eval realizes the
computation and places the result into the s_result sequence.

ble 2 lists these operators and Listing 1 shows an example of how
they may be used to express sparse matrix-vector multiplication
(SpMV). A basic sequence type, denoting a view over contigu-
ous one-dimensional data, is provided. More complex types of
sequences can be built up using operators such as nest and split.
In Listing 1, for example, s_matrix and s_indices are nested
sequences (represented using the CSR matrix format) constructed
from basic sequence types using the nest operator.

Surge uses lazy operator evaluation to defer the realization
of computations until an appropriate implementation context is
available. This works as follows: each time an operator is called,
a node is created in the expression tree for that computation. Note
that operators are not evaluated at the point of call: they are simply
recorded in the expression tree. Once the full expression tree of a
computation is available, it may then be provided as an argument
to the special eval function for realization on the given hardware
platform.

The eval function acts as the entry-point to the Surge code
generator and autotuner. It has the following form:

eval(expr, destination, platform, schedule, policy)

Here, expr denotes the expression tree, destination specifies
where to copy the results of the computation to, and platform is
used to specify which hardware platform to generate code for. The
schedule and policy parameters are optional and are used to drive
code generation. It is possible to manually specify their values, but
by default, they are filled in by the autotuner.

Code Generation and Autotuning

1 2015/8/25

Deployment Phase (Online)
Tuning Phase (Offline)

Input Tuned Implementation

Model

Surge Program

Surge: An Autotuned Nested Data-Parallel
Programming Model for Performance Portability

Blind for review

Abstract
This is the text of the abstract.

Keywords nested data parallelism; performance portability; code
generation; autotuning; input-adaptive; GPU;

1. Introduction
2. Programming Model Overview
Nested data-parallelism has been proven to be a powerful abstrac-
tion for expressing a variety of parallel computations []. However,
most existing NDP programming models map computations to low-
level platform-specific code using fixed strategies (such as flatten-
ing) ??. These are often embedded deep in the model’s compiler
and are difficult to change by users, restricting the model’s ability
to adapt to changing hardware architectures and execution contexts.

Surge is a nested data-parallel programming framework that has
been designed to overcome this limitation. Similar to existing NDP
models, it provides a standard set of nestable data-parallel operators
for expressing computations at a high level. However, Surge com-
putations are decoupled from their implementations through the use
of two first-class language constructs: schedules, and tuning poli-
cies. This is one of the unique features of Surge and it allows users
and/or autotuners to conveniently generate and tune multiple low-
level implementations of the same Surge computation.

Figure ?? provides a high-level overview of the framework. The
Surge parameterized code generator takes in a computation (ex-
pressed using Surge operators) and automatically generates multi-
ple valid implementations, or code variants from it. This is accom-
plished by systematically varying the schedules and tuning poli-
cies associated with the computation. Which code variant to use
depends on several factors including characteristics of the under-
lying architecture, and even the input dataset provided to the com-
putation. To enable intelligent selection of code variants, we have
integrated the Nitro autotuning framework [] into Surge. As shown
in the figure, Nitro generates a machine learning-based model that
selects the optimal code variant at run-time, based on both archi-
tecture and input data characteristics.

NDP Programming Interface Surge provides a set of data-
parallel operators which may be nested within each other. Ta-

[Copyright notice will appear here once ’preprint’ option is removed.]

1 auto spmv =
2 // Apply dot product across all rows of matrix
3 map([=] __device__ (S row, I indices) {
4 // Gather elements from vector x
5 auto z = gather(x, indices);
6
7 auto mul = [](T x, T y) { return x*y; };
8 auto plus = [](T x, T y) { return x+y; };
9

10 // Element-wise multiplication of x with row
11 auto vector_mul = map(mul, row, z);
12
13 // Sum up elements to obtain dot product
14 return reduce(plus, vector_mul);
15 },
16 s_matrix, s_indices);
17
18 // Realize SpMV computation on CUDA platform
19 eval(spmv, s_result, platform::cuda{});
20
21 blah

Listing 1. Surge code for SpMV. The call to eval realizes the
computation and places the result into the s_result sequence.

ble 2 lists these operators and Listing 1 shows an example of how
they may be used to express sparse matrix-vector multiplication
(SpMV). A basic sequence type, denoting a view over contigu-
ous one-dimensional data, is provided. More complex types of
sequences can be built up using operators such as nest and split.
In Listing 1, for example, s_matrix and s_indices are nested
sequences (represented using the CSR matrix format) constructed
from basic sequence types using the nest operator.

Surge uses lazy operator evaluation to defer the realization
of computations until an appropriate implementation context is
available. This works as follows: each time an operator is called,
a node is created in the expression tree for that computation. Note
that operators are not evaluated at the point of call: they are simply
recorded in the expression tree. Once the full expression tree of a
computation is available, it may then be provided as an argument
to the special eval function for realization on the given hardware
platform.

The eval function acts as the entry-point to the Surge code
generator and autotuner. It has the following form:

eval(expr, destination, platform, schedule, policy)

Here, expr denotes the expression tree, destination specifies
where to copy the results of the computation to, and platform is
used to specify which hardware platform to generate code for. The
schedule and policy parameters are optional and are used to drive
code generation. It is possible to manually specify their values, but
by default, they are filled in by the autotuner.

Code Generation and Autotuning

1 2015/8/25

Figure 1. Surge system overview

ANALYZER(

Surge Computation

Expression*Tree* Pla/orm*

SCHEDULE(GENERATOR(

POLICY(GENERATOR(

Source Training Data Schedules

Source Training Data Policies

Source Training Data Variants

Figure 2. Surge code generator

Given an expression tree E, we may define its set of valid imple-
mentations for a particular platform B as follows:

VB = {vi : vi = cg(E, B, si, pi)}
Here, VB is the set of implementations generated from E for

platform B, and cg is the code generation function that given

2 2015/9/5

SURGE	Application Developer

Figure 1.3: Overview of the contributions of this dissertation.

1.3 Contributions
The contributions of this dissertation are outlined below, and summarized in Figure 1.3.

1. A framework for code variant tuning: We describe Nitro, a programmer-directed code

variant tuning framework targeted at expert users. Nitro allows code variants to be

conveniently specified, together with metainformation to aid in selecting among them.

As shown in Figure 1.3, it acts as a substrate for implementing all code variant tuning

strategies described in this dissertation.

2. Input-adaptive tuning: We introduce a strategy for input-adaptive code variant selec-

tion based on supervised classification. Further, we demonstrate an incremental tuning

mode based on active learning that achieves substantial reduction in the training set

size. On five high-performance GPU applications, tuned variants achieve over 93%

of the performance of variants selected through exhaustive search, averaged over the

testing inputs.

3. Architecture-adaptive tuning: We present a novel approach based on multitask learn-

ing to develop a code variant selection model on a target architecture from training on

different source architectures. Additionally, we introduce two techniques for pruning

features that characterize each architecture and demonstrate their importance. Finally,

we present performance results on a set of six benchmark applications and a collection

of six NVIDIA GPUs from three distinct architecture generations.

4. Multiobjective tuning: We implement support for combined 〈code variant, core

clock frequency〉 selection based on multiple objectives, including power and energy

efficiency. In particular, we demonstrate how to build a sorting implementation for the

NVIDIA Jetson TK1 and Tesla K80 GPUs that provides improved energy and power

efficiency with less than a proportional drop in sorting throughput.

5. A tunable programming system: We introduce Surge, a nested data-parallel program-

ming system that decouples the high-level specification of computations from their

7

low-level hardware implementations using two first-class language constructs named

schedules and policies. Surge is then able to automatically generate code variants

from these specifications and tune them using Nitro, as shown in Figure 1.3. For five

real-world benchmarks expressed in Surge, we demonstrate performance that is on-par

or better than handcrafted reference implementations on both CPUs and GPUs.

1.4 Dissertation Roadmap
The remainder of this dissertation is organized as follows: we first introduce Nitro and

describe techniques for code variant tuning with respect to input adaptivity in Chapter 2.

In Chapters 3 and 4, we describe strategies for architecture-adaptive and multiobjective

tuning, respectively. Next, in Chapter 5, we describe Surge, including its programming in-

terface, and code generation and tuning infrastructure. Finally, Chapter 6 discusses relevant

prior research on autotuning techniques and high-level parallel programming systems, and

Chapter 7 concludes.

CHAPTER 2

INPUT-ADAPTIVE TUNING

One approach to input-adaptive code variant selection is to build a statistical model

that maps characteristics of the input dataset to the appropriate variant. Such a model

can be queried to perform variant selection at runtime once properties of the input dataset

are available. In previous work on the algorithm selection problem [14], statistical learning

techniques are used to select among a set of different algorithms [15]–[17]. To date, however,

no general-purpose framework enables users to specify and tune arbitrary code variants and

also customize the tuning process.

This chapter describes a new programmer-directed autotuning system called Nitro. It

focuses on (1) how code variants and metainformation for variant selection are expressed

in Nitro, and (2) underlying system support that selects the most appropriate variant for

a given input dataset. Nitro targets two classes of users: expert programmers who specify

the variants and their meta-information, and end users who invoke Nitro-enabled software

without using any Nitro-specific constructs. Code variants are created and added to the

system with library calls. In addition to expressing code variants, expert programmers

specify how to calculate features or characteristics of the input data sets for each variant

and representative training input data sets. The underlying Nitro system uses supervised

learning in an off-line training phase to infer a model that maps from features of the input

data set to variants. The model is then used by end users to select optimized code variants

for new, unseen inputs. Nitro also includes an interface to optionally customize the tuning

process, which then invokes optimizations and heuristics to reduce training time of the model

and amortize feature evaluation costs.

2.1 Automating Code Variant Selection
Before describing the Nitro system, we first motivate our approach with an example, a

sparse matrix-vector multiply (SpMV). In SpMV implementations, the driving principle is

to avoid representing and computing zero-valued elements of the sparse matrix, thus saving

9

both space and computation. A common sparse matrix representation is the Coordinate

representation, where for each nonzero element in matrix A, the corresponding row and

column are recorded and used in the computation in the following way:

for(i = 0; i < nnz; i++)

y[row[i]] += A[i]*x[col[i]];

While general, the representation and associated computation can be improved if structural

properties of the matrix, such as the distribution of row lengths, are known. In fact, most

SpMV libraries incorporate a variety of matrix representations and associated code for this

reason [18]–[22]. Unfortunately, the structure of the matrix is usually not known until

runtime, requiring the programmer to select the most appropriate variant directly, or some

preprocessing of the input by the system to determine which version to use.

SpMV libraries usually incorporate multiple formats and sometimes multiple variants

per format. For example, the CUSP library [22] for NVIDIA GPUs exposes the different

variants and representations as part of the interface, and users select the appropriate variant

to execute.

The way in which CUSP supports the end user in making these variant selections

(and similar aspects of other libraries) inspired the approach taken in Nitro. Internally,

CUSP examines properties of the input dataset at runtime to determine if a specific matrix

representation selected by the user is likely to be efficient for that input. By encapsulating

these properties along with a few others into features, a training phase can learn a model

to guide the selection of the variant corresponding to the best matrix representation and

among variants representing different parallelization strategies for a single representation.

At runtime, the variant selection can then be performed automatically.

This automatic support of variant selection in Nitro benefits the expert programmers

designing software to be used by others in a variety of contexts. Such expert programmers

often have an understanding of what variants are appropriate for a class of target architec-

tures and some intuition about how the input data set properties affect variant selection.

However, managing the details of collecting properties and determining cutoff values for

variant selection requires extensive and costly trial-and-error experimentation. Therefore, it

is realistic for expert programmers to provide a collection of variants and features, which are

used as metainformation for variant selection. This support in Nitro not only increases the

productivity of expert programmers by eliminating the manual encoding of variant selection,

but also improves the useability of the software for its end users.

10

In the remainder of this section, we illustrate how the Nitro system can be used to

automate variant selection for SpMV.

2.1.1 Nitro System Overview

Figure 2.1 provides a high-level overview of the Nitro system, which consists of two

parts: the Nitro Library, implemented using C++ Templates (Figure 2.1a), and the Nitro

Autotuner, written in Python (Figure 2.1b). The Nitro Library is invoked within an appli-

cation/library to define a set of variants, V = {V1, V2, .., Vi}. The programmer also expresses

meta-information for selecting variants: functions to compute features F = {F1, F2, .., Fj}

and optional constraints for each variant, shown as {C1, C2, .., Ck} in the figure. Constraints

are used to rule out certain variants that are either inappropriate or incorrect to use for a

particular input.

The Nitro Autotuner is invoked with an external Python tuning script that allows

programmers to specify the Training Inputs, how to perform feature evaluation, and other

tuning properties for specific variants and the entire application/library. This decoupling

between the library and the autotuner ensures that the main application code only contains

algorithm-specific details such as variants and features, and allows programmers convenient

experimentation with different tuning options and porting to different architectures. To

communicate with the library, the Python-based autotuner generates a C++ header file and

encapsulates the tuning properties within tuning policies for each variant.

The Nitro Autotuner builds a statistical Model (Figure 2.1b) that maps a set of features

represented by a feature vector [x1, x2, ..., xn] to the label corresponding to the optimal

variant for the corresponding input. By default, Nitro employs for this purpose Support

Vector Machines (SVMs) [23], a widely used machine learning algorithm to build the model

from an offline training phase on the Training Input so that it can be consulted at runtime

given the feature vector of a new input. We use the publicly available libSVM [24] for this

purpose.

2.1.2 Nitro Library Constructs

Table 2.1 provides a summary of the constructs available in Nitro for expressing variants

and their associated features and constraints. Figure 2.2 provides Nitro code for SpMV to

illustrate these constructs, as described in the following paragraphs.

11

Nitro Library (C++)

Code	
 Variant	

Variant	
 V1	

Variant	
 V2	

…	

…	

Variant	
 Vi	

F1	
 F2	
 …	
 …	
 Fj	

C1	
 C2	
 …	
 …	
 Ck	

Library	
 Code	

Applica9on	
 Code	

Applica9on	
 Code	

Models	

Query

Models	

Training	
 Inputs	

Nitro	

Autotuner	

(Python)	

Models	

Classifier	

Tuning	
 Script	

Nitro Library (C++)

Code%Variant%

Variant%V1%

Variant%V2%

…%

…%

Variant%Vi%

F1% F2% …% …% Fj%
C1% C2% …% …% Ck%

(a) (b)

Figure 2.1: Overview of the Nitro system. (a) The production version of the library/ap-
plication. The C++ library is used to define variants, features, and constraints. Calling
the variant evaluates the input features at runtime and queries the accompanying model to
select the right variant to execute for a given input. (b) The offline autotuning process. User
provides a tuning script and training inputs. The autotuner runs the application/library
for each training input and collects training data. The classifier is then consulted with the
training data to construct the model(s).

12

Table 2.1: List of functions provided by Nitro for variant, feature, and constraint manage-
ment

Function Parameters Description
code_variant Constructor Template parameters:

tuning_policies object,
Tuple of argument types.
Arguments: Pointer to
context object

Creates code_variant object

add_variant Pointer to Variant Function
Object

Adds a variant to the
code_variant object’s
internal variant table

set_default Pointer to Variant Function
Object

Used to set default variant to
execute

add_input_feature Pointer to Feature Function
Object

Adds the specified function
to the list of feature func-
tions

add_constraint Pointer to Variant Func-
tion Object, Pointer to Con-
straint Function Object

Adds a constraint function
to execute before evaluating
given variant.

fix_inputs() Argument(s) to Variant Fixes inputs to variant.
Used for asynchronous
feature evaluation.

operator()(...) Argument(s) to Vari-
ant (empty with
async_feature_eval)

Executes the correct under-
lying variant.

13

namespace MySparse {
void SparseMatVec(HostMatrix *matrix)
{
 using namespace nitro;
 typedef thrust::tuple<HostMatrix *> ArgTuple;

 // Create Nitro Tuning Context
 context cx;

 // Create code_variant object
 code_variant<tuning_policies::spmv,
 ArgTuple> spmv(cx);

 // Declare and Add Variants
 csr_vector_type<HostMatrix> __csr_vector;
 dia_type<HostMatrix> __dia;
 ...
 spmv.add_variant(&__csr_vector);
 spmv.add_variant(&__dia);
 ...

 // Set Default Variant
 spmv.set_default(&__csr_vector);

 // Declare and Add Features...
 nnz_type<HostMatrix> __nnz;
 num_rows_type<HostMatrix> __num_rows;
 ...
 spmv.add_input_feature(&__nnz);
 spmv.add_input_feature(&__num_rows);
 ...

 // ...and Constraints
 dia_cutoff_type __dia_cutoff;
 spmv.add_constraint(&__dia, &__dia_cutoff);
 ...

 // Variant Call
 spmv(matrix);
}

// Define CSR Vector Variant
template <typename HostMatrix>
struct csr_vector_type :
 nitro::variant_type<HostMatrix *> {
 double operator()(HostMatrix *matrix) {
 ...
 }
};
...
} // end namespace MySparse
!
!
!Figure 2.2: Example Nitro Library interface for SpMV.

14

2.1.2.1 Defining and Adding Code Variants

Nitro represents a function that has code variants using the code_variant class. Each

variant is expected to be functionally equivalent and must use the same interface. During

instantiation, a tuple of the function’s argument types, and its tuning policy must be

specified as template arguments. The tuning policy for each such function is generated

by the tuning script in a separate header file, as discussed in the next section. A function to

be tuned by Nitro can thus be any general-purpose C++ function. Also during instantiation

of the code_variant class, a pointer to a context object that maintains global state among all

the variants in the program must be included as a constructor argument. In Figure 2.2, we

define a function SparseMatVec within the MySparse library, which provides a tuned SpMV

implementation using Nitro. The details of the tuning process are thus abstracted away

from the end user, who can use the MySparse library without ever needing to know about

Nitro.

Each variant must be defined as a C++ function object deriving from the variant_type

class. An example variant definition is provided in the bottom of Figure 2.2. Variants are

added to the code_variant object using the add_variant function, which accepts a pointer

to the function object for that variant. All variants of a function must have the same

argument type(s). Users may explicitly specify a default variant using the set_default

function. Default variants are assumed to work correctly for all inputs and are used when

one or more user-defined constraints fail. If no default is specified, the system selects the

first variant as the default.

In Figure 2.2, we add two different variants for SpMV, corresponding to different formats

for the sparse matrix: csr_vector_type for Compressed Sparse Row, and dia_type for

Diagonal [22].

The code for the variant must be specified in the operator() function, which is used by

Nitro to invoke the desired variant. Nitro variants are required to return a double precision

value, which by default denotes the time taken by the variant. However, by returning the

appropriate value, Nitro can also be used to predict variants according to other optimization

criteria, for example, energy usage, or to find the variant that provides the approximate result

with the smallest margin of error.

2.1.2.2 Defining Input Features

Input features are described in Nitro through feature functions. These have the same

argument types as the variant, but always return a double, which represents the value of the

15

calculated feature for an input. In Nitro, feature functions must be wrapped in a function

object derived from input_feature_type.

The add_input_feature function accepts a pointer to a feature function object and adds it

to the internal feature function table. All values from the feature functions automatically get

evaluated before the code for the variant starts executing. For example, in Figure 2.2, input

features include __nnz, and __num_rows, the number of nonzeroes, and the number of rows,

respectively. To hide the runtime overhead of feature evaluation, an optimization discussed in

Section 2.2.3 is asynchronous feature evaluation; asynchronous feature evaluation is enabled

by calling the fix_inputs function before calling operator().

2.1.2.3 Defining Constraints

For certain inputs, it is possible that a variant produces wrong results, or takes unac-

ceptably long to execute. Nitro provides support for handling such cases using user-defined

constraints. Constraint functions can be added to code variants using the add_constraint

function, which accepts a constraint function and the specific variant for which it is valid.

Constraints are automatically evaluated by the library and either force the variant to return

an ∞ value during the offline training phase (thus ensuring that variant is not selected), or

revert back to the default variant during the online deployment phase. In the example of

Figure 2.2, the constraint __dia_cutoff ensures that the __dia variant does not get executed

if the constraint evaluates to false.

2.1.3 Nitro Autotuner Interface

The Nitro Autotuner uses an external Python interface to allow users to precisely control

various aspects of the autotuner and the tuning process for each variant. The interface

exposes the autotuner and code_variant classes, which can be used to configure tuning

options globally, and for each code variant, respectively. Table 2.2 shows the various

configuration options available. Most of these options have a default value, and the only

essential information that must be provided is the training input dataset and the functions

to be tuned. The remaining functionality allows the expert user to optionally control the

tuning process as desired.

Figure 2.3 shows a tuning script for the SpMV example. A single code_variant object is

created (named ‘spmv’) and both global and variant-specific tuning properties are set. The

call to the tune method starts the autotuning process.

Tuning options specified using this interface are written out to a header file so that the

autotuner can communicate with the C++ part of the system. Generating a static header

16

Table 2.2: Configuration options in the Nitro Autotuner interface.

Option Description

classifier
Classifier Object to Use (Default:
classifier_svm)

parallel_feature_evaluation Enable/Disable Parallel Feature Evaluation

parallel_constraint_evaluation
Enable/Disable Parallel Constraint Evalua-
tion

constraints Enable/Disable Constraints

async_feature_eval
Enable/Disable Asynchronous Feature Evalu-
ation

feature_selection Enable/Disable Feature Selection
Tuning Algorithm Description

tune Default, trains on entire training input

itune
Incremental tuning, optional iter or acc pa-
rameters

from nitro.autotuner import *
from nitro.code_variant import *

import glob

Set tuning properties for spmv
spmv = code_variant("spmv", 6)
spmv.classifier = svm_classifier()
spmv.constraints = False
spmv.parallel_feature_evaluation = False
spmv.constraints = True
spmv.async_feature_eval = False

tuner = autotuner("spmv")

Set global tuning properties
matrices = glob.glob("inputs/training/*.mtx")
tuner.set_training_args(matrices)
tuner.set_build_command("make")
tuner.set_clean_command("make clean")

Tune
tuner.tune([spmv])
!

Figure 2.3: Example Nitro Autotuner interface for SpMV.

17

file also enables us to use the C++ template mechanism to selectively generate relevant

code.

2.2 The Nitro Autotuner
This section elaborates on the functionality of the Nitro Autotuner. We describe how

it builds a model for variant selection and its optimizations and heuristics to reduce the

overhead of training and feature evaluation.

2.2.1 Building a Model for Variant Selection

As mentioned in the previous section, the Nitro Autotuner automatically constructs a

model for variant selection using SVMs, a form of supervised classification. Supervised

classification utilizes a set of labeled training examples to infer a function that maps new,

unseen input instances to their correct labels. A set of training examples of the form 〈xi, yi〉

is provided, where each xi refers to a feature vector and yi refers to the corresponding label

for xi. In our case, the label set is integers in the range {0, 1, ...|V | − 1}, where V is the set

of variants. During the training phase, for each training input i with corresponding feature

vector xi, the Nitro Autotuner performs exhaustive search over the code variants and assigns

to label yi the integer designating the variant that leads to the best performance. The result

of the training phase is a classification model that predicts the appropriate label for a new,

unseen feature vector.

Nitro uses the Radial-Basis Function (RBF) [25] kernel to perform classification by de-

fault. The features are scaled to the range [−1, 1], and subsequently a cross-validation-based

parameter search is performed to find the kernel parameters.

2.2.2 Incremental Tuning to Reduce Training Inputs

The execution time of code variants is difficult to predict in general, and can often be

very high for certain inputs. Coupled with the fact that programmers may provide a large

number of redundant training instances, the training phase can often become unacceptably

time consuming. To reduce the number of training inputs required for the training phase,

the Nitro Autotuner supports incremental tuning, which enables Nitro to perform exhaustive

search of variants on only a subset of the training inputs.

A key observation is that the execution time required to derive feature vectors is typically

far lower than the cost of actually executing variants. Therefore, we compute feature vectors

for all the given inputs, and compute output labels using exhaustive search (which requires

18

running all variants for that input) for only a small subset of the inputs and then select

additional inputs to add to the training set to improve the model.

For this purpose, we employ Active Learning [26], an iterative learning technique. We

provide an initial training set consisting of i labeled input instances, with at least one input

that has the label of each variant. An additional j unlabeled input instances (j >> i)

provides the active pool for active learning. Using the feature vectors, Nitro then iteratively

picks new training instances to label using the Best-vs-Second-Best active learning heuristic

for SVMs proposed in [10]. At each iteration, Nitro updates the model.

When using incremental tuning, Nitro requires a stopping criterium to determine when

the number of training inputs is sufficient to construct an accurate model. As shown in

Table 2.2, the incremental tuning algorithm is selected by invoking itune, with either a

number of iterations iter or an accuracy threshold acc. Limiting the number of iterations is

useful when the number of training inputs is too large for Nitro to evaluate. For problems

whose decision boundaries are of moderate complexity, our experience shows that 20-25

iterations is usually sufficient to build a good model (see Section 2.4.2). Alternatively the

accuracy threshold with respect to the test input is useful if all of the test inputs have

known labels. The tuner then runs automatically, checking the prediction performance at

each step on the test set, and then converges when the model reaches this accuracy. For the

benchmarks in this work, we were able to achieve considerable reductions in training times

using this strategy for incremental tuning (see Section 2.4.2).

2.2.3 Optimizing Feature and Constraint Evaluation

As additional optimizations, Nitro can also (1) parallelize feature and constraint eval-

uation, and (2) start executing feature functions asynchronously. The latter mode returns

control to the main thread immediately and thus allows the overlap of other computation

with feature evaluation so that some of the feature evaluation time may be amortized.

Calling the variant while in asynchronous mode introduces an implicit barrier, ensuring the

correct evaluation of all features before variant execution. These two modes are currently

implemented in Nitro using the Intel TBB [27] library.

2.3 Benchmarks
Table 2.3 lists the benchmarks we use to evaluate Nitro’s effectiveness, including a

description of the set of variants, the features used, and number of inputs for training and

test datasets. All of these benchmarks are derived from high-performance CUDA libraries

that already included code variants. Further, for each benchmark, the best performing code

19

Table 2.3: A brief description of variants and list of features used for each benchmark. The
last column lists the sizes of training and testing sets.

Benchmark Variants Description Features (#Training7i/ps,
#Testing7i/ps)

CSR$Vec Performs.SpMV.on.CSR$formatted.matrices..Assigns.a.warp.to.each.row.
DIA,.ELL Perform.SpMV.on.DIA.and.ELL.formatted.matrices.
CSR$Tx,.DIA$Tx,.ELL$Tx Same.as.above.variants,.but.input.vector.cached.in.texture.memory.
CG$Jacobi,.CG$Bjacobi,.CG$
Fainv

Conjugate.gradients.method.with.Jacobi,.Blocked.Jacobi.and.Factorized.
Approximate.Inverse.preconditioners.

BiCGStab$Jacobi.,BiCGStab$
Bjacobi,.BiCGStab$Fainv

BiConjugate.gradients.Stabilized.method.with.Jacobi,.Blocked.Jacobi.and.
Factorized.Approximate.Inverse.preconditioners.

EC$Fused,.EC$Iter
Expand.incoming.vertex.frontier,.filter,.and.produce.outgoing.vertex.
frontier..Fused.version.invokes.single.kernel.that.steps.through.BFS.
iterations..Iterative.version.invokes.a.separate.kernel.for.each.BFS.iteration.

CE$Fused,.CE$Iter Contract.incoming.edge.frontier,.filter,.and.produce.outgoing.edge.frontier.

2$Phase$Fused,.2$Phase$Iter Isolates.vertex.expansion.and.edge.contraction.workloads.into.separate.
kernels.

Sort$ES,.Sort$Dynamic
Sort.data.first,.and.then.do.a.quick.run$length.detection..Even$Share.(ES).
version.assigns.an.even.share.of.inputs.to.thread.blocks,.dynamic.uses.a.
queue.

Global$Atomic$ES
Global$Atomic$Dynamic Compute.Histogram.using.global.atomic.add.operations..

Shared$Atomic$ES
Shared$Atomic$Dynamic

Compute.Block$level.Histogram.using.shared.memory.atomicAdd,.and.then.
reduce.to.final.Histogram.

Merge.Sort Merge.sort.from.ModernGPU.library.

Locality.Sort Locality.sort.from.ModernGPU.library.

Radix.Sort Radix.sort.from.CUB.

(54,.100)

(26,.100)

(20,.148)

(120,.600)N,.Nbits,.NAscSeq

N,.N/#Bins,.SubSampleSD (200,.1291)

AvgNZPerRow,.RL$SD,.
MaxDeviation,.DIA$Fillin,.ELL$
Fillin

AvgOutDeg,.Deg$SD,.
MaxDeviation,.Nvertices,.
Nedges

NNZ,.Nrows,.Trace,.DiagAvg,.
DiagVar,.DiagDominance,.
LBw,.Norm1

SpMV

Solvers

Sort

BFS

Histogram

variant varies according to properties of the input data. By using existing high-performance

libraries, we are able to focus the experiment on the small amount of additional code required

to integrate Nitro and deriving the features to be used in variant selection. The training

and test inputs come from standard sources, as described, and the training inputs are not

included in the test inputs. Further, we choose training inputs such that all variants are

well represented in the training set for each benchmark.

2.3.1 Sparse Matrix-Vector Multiplication (SpMV)

As described in Section 2.1, SpMV is a critical operation that is used in many iterative

methods for solving large-scale linear systems. For this experiment, we use the CUSP

library [9] to provide the code variants for SpMV. We use 3 features related to the matrix

row lengths (average nonzeros per row, standard deviation of the row lengths, and deviation

of the longest row from the average row length), and 2 features that estimate the padding

required for the DIA and ELL formats (DIA and ELL fill-in). A training set consisting of

54 matrices from the UFL Sparse Matrix collection [28] was used. For the 100 matrices in

the test set, we selected 10 matrices each from a set of 9 groups in the UFL collection at

random (with the exception of the Williams group, which has only 7 matrices in the UFL

collection), and generated 13 matrices related to stencils.

20

2.3.2 Linear Solvers and Preconditioners

Many large-scale scientific simulations such as computational fluid dynamics (CFD)

and structural mechanics [29] involve solving partial differential equations (PDE) systems.

Typically, solution to a PDE-based system involves solving the underlying sparse linear

system using software toolkits [30], [31]. One of the challenges in effectively using such

toolkits is the selection of an appropriate 〈 linear solver, preconditioner 〉 combination, as

this selection impacts both the performance and convergence of the computation. For this

experiment, we use 6 (linear solver, preconditioner) combinations from the CULA Sparse

toolkit [31], which is a GPU library for solving large sparse linear systems. We select features

for this benchmark based on the work by Bhowmick et al. [32]. These features reflect different

numerical properties of sparse matrices such as trace and 1-norm.

We use symmetric sparse matrices from the UFL Sparse Matrix collection to represent

sparse linear systems. We use 26 and 100 matrices in the training and testing set, respec-

tively.

2.3.3 Breadth-First Search (BFS)

BFS is used as a basis for algorithms that analyze sparse relationships (such as social

networks and electronic design automation) represented as graphs. Using Nitro, we select

variants from a set of highly optimized BFS implementations for GPUs [33], part of a larger

set of GPU primitives provided in the Back40 Library [34]. We consider a set of six variants

provided in the library, which are designed for different types of input graphs. The library

includes a seventh variant, named Hybrid, that tries to dynamically combine the strengths of

the CE-Fused and 2-Phase Fused kernels. Matching the performance of the Hybrid variant

was one of our goals. We use a set of 5 graph features: number of vertices and edges, average

out-degree, standard deviation of the degree of each node, and deviation of the node with

the highest out-degree from the average out-degree. The training set for BFS consists of a

set of 20 graphs. We then test the performance of the Nitro-tuned version on 148 graphs in

the DIMACS10 group in the UFL Sparse Matrix collection. We run 100 randomly sourced

BFS traversals for each graph to evaluate each variant. Further, we use traversed edges per

second (TEPS) as the optimization metric.

2.3.4 Histogram

A Histogram operation counts the number of observations that fall into one of a set

of disjoint categories or ‘bins’. Histograms are very commonly used as building blocks in

21

more complex algorithms in a number of domains, especially image processing. We use the

variants implemented in the CUDA Unbound (CUB) [11] library for this benchmark.

We evaluate three variants and two grid-mapping strategies, thus giving rise to six code

variants. We use 3 features: length of the input sequence, average number of elements

per bin, and the standard deviation of a subsequence of the input sequence (SubSampleSD

in Table 2.3). We construct a 256-bin histogram for grayscale images, with pixel values

ranging from 0 to 255. For training and testing, we use the images from the INRIA Holidays

Dataset [35] (converted to grayscale). Out of the 1491 images in the dataset, 200 are used

for training and the rest for testing.

2.3.5 Sort

Sorting is used as a building block in a myriad of algorithms and methods. We use 3

high-performance GPU sorting algorithms, Merge Sort, Locality-Optimized Segmented Sort,

and Radix Sort, as variants for this benchmark. The Merge and Locality Sorts are part of

the ModernGPU [36] library of GPU primitives, while the Radix Sort implementation is

provided in CUB [11]. We use a set of 3 features: length of the input sequence, number of

bits in the input data type, and the number of ascending subsequences of the input.

Sorting is performed on 32- and 64-bit floating point keys. We train a combined model

for both data types and report performance numbers achieved on a test set consisting of

both types of data. The training set consists of 60 sequences for each data type, thus

giving us a total of 120 instances. For testing, we use a total of 600 sequences, 300 for each

data type. Further, each of the 300 instances is divided into 3 categories, 100 consisting of

uniformly random keys, 100 consisting of reverse sorted keys, and 100 consisting of almost

sorted keys. We also tried replacing the uniformly random keys with keys drawn randomly

from the Standard Normal and Standard Exponential distributions, but the performance

was identical. The “almost-sorted” category is generated by taking a sorted sequence and

randomly swapping 20-25% of the keys. Key lengths are varied from 100K to 20M keys.

2.4 Results
We run these benchmarks on a system with an Intel Core i7 930 processor with 4 GB of

RAM. The graphics card used is an NVIDIA Tesla C2050 (Fermi).

To evaluate the effectiveness of Nitro, we first compare the average performance of

variants selected using Nitro with the best variants selected using exhaustive search. In

all benchmarks, the test set we use to compare performance is much larger than the training

set used to train the classifier. We do this to evaluate whether the model generalizes well to

22

new inputs. We also evaluate the performance of the training time reduction heuristic and

provide an analysis of the performance variation with respect to features.

2.4.1 Variant Selection

Figure 2.4 shows the performance of individual variants with respect to the performance

achieved by the best variants (shown as 100% in the figure), on average, for each of the 5

benchmarks with their respective test sets. Also included in the figure is a comparison with

the performance achieved by variants tuned by Nitro. In all benchmarks, the Nitro-tuned

variants achieve within 7% of the performance achieved by the best variants.

2.4.1.1 Sparse Matrix-Vector Multiplication

The first bar in Figure 2.5 shows the tuning results for SpMV. On average, SpMV selected

through Nitro achieved a performance of 93.74% compared to the variants selected through

exhaustive search. Further, we notice that over 90% of the input matrices achieve 70% or

more of the performance of exhaustive search, and close to 80% of the input matrices achieve

90% or more performance.

We notice a few data points lying below the 70% mark as well. Poor performance on

these matrices is mainly due to the significant performance penalty of mispredicting. In most

cases, this is because DIA was chosen incorrectly, or because Texture-Cached was not chosen

0	

20	

40	

60	

80	

100	

N
itr
o	

CS
R-­‐
Ve

c	

DI
A	

EL
L	

CS
R-­‐
Tx
	

DI
A-­‐
Tx
	

EL
L-­‐
Tx
	

N
itr
o	

CG
-­‐Ja

co
bi
	

CG
-­‐B
ja
co
bi
	

CG
-­‐F
ai
nv
	

Bi
CG

St
ab
-­‐Ja

co
bi
	

Bi
CG

St
ab
-­‐B
ja
co
bi
	

Bi
CG

St
ab
-­‐F
ai
nv
	

N
itr
o	

EC
-­‐F
us
ed

	

EC

-­‐It
er
	

CE
-­‐F
us
ed

	

CE

-­‐It
er
	

2-­‐
Ph

as
e-­‐
Fu
se
d	

2-­‐
Ph

as
e-­‐
Ite

r	

N
itr
o	

So
rt
-­‐E
S	

So
rt
-­‐D
yn
am

ic
	

Gl
ob

al
-­‐A
to
m
ic
-­‐E
S	

Gl
ob

al
-­‐A
to
m
ic
-­‐D
yn
am

ic
	

Sh
ar
ed

-­‐A
to
m
ic
-­‐E
S	

Sh
ar
ed

-­‐A
to
m
ic
-­‐D
yn
am

ic
	

N
itr
o	

M
er
ge
	
 S
or
t	

Lo
ca
ilt
y	

So
rt
	

Ra
di
x	

So
rt
	

SpMV	
 Solvers	
 BFS	
 Histogram	
 Sort	

%
	
 P
er
fo
rm

an
ce
	
 w
.r.
t	
 B

es
t	

Average	
 Performance	
 VariaTon	
 of	
 Variants	

Figure 2.4: Performance variation among variants.

23

0	

0.2	

0.4	

0.6	

0.8	

1	

Sp
MV
	

So
lve
rs	
 BF

S	

His
tog
ram

	

So
rt	

Fr
ac
<o

n	

of
	
 T
es
t	
 S

et
	

Performance	

<	
 70%	

70%	
 -­‐	
 80%	

80%	
 -­‐	
 90%	

90%	
 –	
 100%	

100%	

Figure 2.5: Performance comparison across all test inputs.

when it should have been. This may be improved with additional or more representative

features: we currently do not have a feature designed to capture when the Texture-Cached

variant should be selected.

2.4.1.2 Linear Solvers and Preconditioners
For the second benchmark in Figure 2.5, on average the variants selected using Nitro

perform at 93.23% of the best performing variants. This average number is for 94 matrices

as no variant was able to solve linear systems represented by 6 matrices, i.e., the variants

did not converge to a solution. Additionally, the results indicate that of the 94 test matrices,

there were 35 for which at least one variant did not converge. The Nitro version successfully

selected a converging variant 33 out of the 35 times. We can thus make the following

observation: Nitro not only predicts a high-performance variant, but also selects a converging

one with high accuracy.

2.4.1.3 Breadth-First Search
For the third benchmark in Figure 2.5, the average performance of the variant selected

by Nitro with respect to variants selected by exhaustive search is 97.92%.

We observed that one of CE-Fused or 2-Phase-Fused was almost always selected for

all the graphs we tested on. Further, 2-Phase-Fused seemed to perform relatively well for

most graphs with high average out-degrees, but poorly compared to the CE-Fused kernel

for graphs with relatively low average out-degrees. Both these observations correspond with

the results observed in Merrill et al. [33]. Due to the relatively simple decision boundary

24

between variants in this experiment, Nitro-selected variants were able to achieve very high

performance using just 20 training data instances.

The Hybrid variant proposed in Merrill et al. [33] tries to dynamically combine the

strengths of the CE-Fused and 2-Phase-Fused kernels. The Nitro-tuned version was able to

beat the performance of the Hybrid version by 11% on average. Even though the Hybrid

kernel performs well uniformly across different inputs, we noticed that it was almost always

slightly slower than the best variant for a given input (average performance was 88.14% of

the best variant). This is possibly due to the dynamic nature of the Hybrid kernel.

2.4.1.4 Histogram

For the fourth benchmark in Figure 2.5 the average performance achieved by the variants

tuned with Nitro with respect to the best variants is 94.16%. We observe that the tuned

variant performs reasonably well across different input distributions. The global and shared

atomic variants, however, perform well only when the data are uniformly distributed. For

nonuniformly distributed data, the high latency of atomic-add operations on GPUs coupled

with the high number of concurrent threads trying to update a small number of bins causes

the global and shared atomic variants (especially the global atomic variant) to experience a

performance drop.

2.4.1.5 Sort

The last bar in Figure 2.5 shows the tuning results for the Sort benchmark. The Nitro-

tuned variants achieve an average performance of 99.25% with respect to the best variants.

We observed from our experiments that while Radix Sort performs exceedingly well for

the 32-bit keys, its performance is surpassed by Merge and Locality Sorts in the 64-bit case.

In particular, for almost sorted sequences, Locality Sort performs best. From Figure 2.4, it

is also clear that on average, the Nitro-selected variant performs better than all the other

variants, irrespective of data type.

2.4.2 Training Time Reduction

As described in Section 2.2, Nitro supports the option of incremental tuning when

there is possibly redundant training data and/or the variants take a long time to execute.

Figure 2.6 shows that the number of iterations required by incremental tuning to reach

within 90% of the performance achieved without incremental tuning is roughly 25. To

match the performance achieved by using the full training set, incremental tuning takes no

more than 50 iterations, and can be achieved in less than 20 iterations for all but the SpMV

25

50	

60	

70	

80	

90	

100	

1	
 11	
 21	
 31	
 41	
 51	
 Av
er
ag
e	

%
	
 P
er
fo
rm

an
ce
	
 w
.r.
t	
 B

es
t	

Number	
 of	
 Training	
 Instances	

Incremental	
 Tuning	
 Performance	

SpMV	

Solvers	

BFS	

Histogram	

Sort	

Figure 2.6: Convergence for active learning training heuristic.

benchmark. Another observation from the figure is that sometimes additional training data

lead to a decrease in performance, and more iterations are needed for convergence. Even

with carefully chosen training data, the incremental tuning algorithm uses only a fraction

of this data to achieve comparable performance to tuning on the full training set.

2.4.3 Feature Evaluation Overhead

Figure 2.7 shows the variation in performance as features with higher evaluation overhead

are added incrementally. We notice that in case of the Sort and Solver benchmarks, removing

the feature with the highest evaluation overhead (Presortedness and Left Bandwidth, respec-

tively) has little effect on final performance. In the case of BFS, we notice that performance

depends almost entirely on the Average Out-Degree (shown as Feature 1 in the graph).

Using this pruned feature set thus results in almost negligible feature evaluation overhead

for the BFS and Sort benchmarks (since we are only left with O(1) features). In Histogram,

the most expensive feature (Feature 3 in the graph) computes the standard deviation of a

subsample of the input. The default size for this is 25% of the size of the input sample,

or 10,000 elements, whichever is lower. From our experiments, we noticed that evaluation

overhead for this feature can be brought down to less than 0.1% of the time taken by the

variant on average by simply decreasing the size of the subsample, at the cost of slightly

decreased overall performance.

In the remaining benchmarks (SpMV and Solvers), it is evident that getting peak

26

70	

75	

80	

85	

90	

95	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

%
	
 P
er
fo
rm

an
ce
	
 w
.r.
t	
 B

es
t	

Number	
 of	
 Features	

Performance	
 w.r.t	
 Feature	
 EvaluaBon	

Overhead	

SpMV	

Solvers	

BFS	

Histogram	

Sort	

Figure 2.7: Performance variation as features with higher evaluation overhead are added
incrementally.

performance requires evaluating the more expensive features. However, this cost is amortized

for SpMV as we compute the feature vector only once and execute the SpMV operation

multiple times. For Solvers, feature vector computation takes place only once, and is

amortized over hundreds or thousands of solver iterations.

2.5 Summary
This chapter has presented Nitro, a programmer-directed autotuning framework that

permits the expression of code variants, together with metainformation for selecting among

them. Using the Nitro platform, we implemented a strategy that employs supervised learning

to select code variants based on features of their input dataset. The support in Nitro

for deriving classification models of input datasets is particularly important for irregular

applications, where the best version of a computation is heavily affected by the structure of

the input. On five high-performance GPU applications, variants tuned using our strategy

achieve over 93% of the performance of variants selected through exhaustive search, averaged

over the testing inputs. Further, we demonstrate an incremental tuning mode based on active

learning that achieves substantial reduction in the training set size.

CHAPTER 3

ARCHITECTURE-ADAPTIVE TUNING

Input-adaptive code variant selection schemes such as the one described in Chapter 2

rely on an offline training phase for model construction. However, such model(s) must be

retrained every time the software is installed on a new architecture or if the underlying

hardware is upgraded. This training process is typically very time consuming and heavy on

system resources; we are required to evaluate each variant v for each input i when collecting

the training data. This work evaluates whether we can develop a methodology to reuse

results of training on two or more source architectures to create a variant selection model

for a different target architecture without training on the target architecture. While the

overall approach we present in this work is general, we simplify the problem by focusing on

only NVIDIA GPUs.

In this chapter, we develop a strategy to automatically construct code variant selection

model(s) on a target architecture using only training data from a set of source architectures

specified by the programmer, together with information that characterizes each architecture.

We treat the cross-architectural tuning problem as a multitask learning [37] problem, where

each separate task denotes an architecture. Features that characterize each architecture

(hereafter referred to as device features) are collected automatically (a one-time operation)

on each architecture. Device features not relevant to the application in question are pruned

away. The resulting device features are then used in the multitask learner to come up with

variant selection model(s) for the target architecture.

3.1 System Overview
The automated system presented in this chapter extends the Nitro autotuning framework

described in Chapter 2. Figure 3.1(a) illustrates the approach for input-adaptive tuning in

Nitro. For each architecture, training data have the form {(x1, y1), . . . , (xN , yN)}, where

each xi represents an input feature vector and each yi represents the best variant for that

28

input. When presented with a new, unseen input at runtime, the model predicts the best

variant to use.

Figure 3.1(b) shows how we have extended Nitro to support architecture-adaptive tuning.

We can omit the training data collection on the target architecture by using previously

collected training data from one or more source architectures. To capture the signature of the

target architecture and its relationship to the source architectures, we rely on device features,

listed in Table 3.1. On NVIDIA platforms, these features are obtained in three possible ways:

most are discovered instantaneously using the built-in deviceQuery program bundled with

the CUDA toolkit. Static device features are easily obtained published specifications that

augment what is returned by deviceQuery. If any other features are needed, then Custom

features can be added. We observed that there were no features that captured the cost of

atomic operations, which vary significantly across GPU generations. Therefore, we added to

Target Model Learning Algorithm Target Training Inputs

Selected Variant Input

Model Training (Offline)

Deployment (Runtime)

Model Query

Target Model

(a) Overview of input-adaptive tuning in Nitro.

Selected Variant

Deployment on Target (Runtime)

Model Query

Target Model

Model Construction (Offline)

Training Inputs

Selected Device Features
Multi-Task Learning Target Model

Source Architectures

Input

Selected Device Features

(b) Architecture-adaptive tuning overview.

Figure 3.1: Comparison of input-adaptive tuning in Nitro with architecture-adaptive
tuning. When tuning across architectures, values of the device features selected through
DFS are obtained on both the source (during model construction) and target (during
deployment). These are then concatenated with feature values of the relevant input data
point (‘+’ operator in the figure).

29

Table 3.1: Values of GPU device features for 6 architectures.

Fermi Kepler Maxwell
Feature 480 C2075 770 K20c 750 980

deviceQuery
global_mem (GB) 1.5 5.2 4.0 4.7 2.0 4.0
cuda_cores 480 448 1536 2496 640 2048
clock_rate (MHz) 1401 1147 1110 706 1268 1216
mem_clock_rate (MHz) 1848 1566 3505 2600 2700 3505
mem_bus_width (bits) 384 384 256 320 128 256
l2_cache_size (KB) 768 768 512 1280 2048 2048
shared_mem_per_block (KB) 48 48 48 48 48 48
copy_engines 1 2 1 2 1 2

Static
peak_gbps 177.4 144.0 224.0 208.0 86.4 224.0
peak_gflops_sp 1345 1030 3213 3520 1389 4612
peak_gflops_dp 168 515 134 1170 43 156

Custom
shared_atomic (msec) 0.193 0.238 0.281 0.361 0.011 0.006
global_atomic (msec) 0.402 0.488 0.034 0.051 0.063 0.036

Nitro two microbenchmarks that measure this; other microbenchmarks could be added to

the Custom set as needed. Device feature values for the six GPU architectures we consider

in this work are also listed in Table 3.1.

We pose the problem of architecture-adaptive tuning as a multitask learning (MTL)

problem. MTL algorithms learn multiple tasks simultaneously to capture intrinsic relat-

edness between tasks. In our system, each separate architecture is represented as a task,

and intertask relationships are learned using MTL algorithms. We use feature concatenation

for MTL, which derives the code variant selection model for the target architecture and is

formally described in Section 3.2.1. In earlier stages of this research, we implemented and

explored other MTL algorithms such as weighted kernels and probabilistic SVMs [38], but

found that variant selection performance was far more affected by device feature selection

than MTL algorithms.

We have discovered that using the full set of 13 device features does not yield the

most accurate predictions, and which features are most relevant to code variant selection

is application-specific. Therefore, our system performs device feature selection (DFS) to

pinpoint the small number of device features relevant to the current application.

Each code variant stresses different components of the hardware architecture, such as

30

the DRAM subsystem, floating-point performance, parallelism, machine balance, etc. To

demonstrate that device feature selection is application-specific, Table 3.2 approximates the

similarity between architectures for two benchmarks: Histogram and Sparse Matrix-Vector

Multiplication (SpMV). Each entry in the table corresponds to the cosine-similarity (cosine

of the angle between vectors) between device feature vectors of the corresponding archi-

tectures. Thus, values closer to +1 indicate similarity, while values closer to -1 indicate

dissimilarity. Note that the optimal set of device features for both the benchmarks are

different, since Histogram and SpMV variants stress different components of the hardware

architecture. Thus, two architectures which are very similar for the SpMV computation may

be completely different for Histogram. For example, the entry corresponding to (C2075,

750) shows that for Histogram, the C2075 and 750 are quite dissimilar (a fact confirmed

in Figure 1.2), while the same pair of architectures is relatively similar for the SpMV

benchmark.

3.2 Tuning Process
Our system employs a two-phase device feature selection (DFS) strategy to automati-

cally find the best performing subset of device features (in terms of final variant selection

performance) for each computation. These selected device features may then be used by

a multitask learning algorithm to automatically construct variant selection models. The

following subsection describes the process of model training using the feature concatenation

technique. The subsections that follow describe how the multitask learner constructs variant

selection models on the target architecture using (1) all device features, (2) device features

found by profile DFS (P-DFS), and (3) device features found by performing cross-validation

search on the output of P-DFS.

Table 3.2: Cosine similarity between architectures for Histogram (H) and SpMV (S).
Values closer to +1 indicate similarity, while values closer to -1 indicate dissimilarity.

480 C2075 770 K20c 750 980
H S H S H S H S H S H S

480 1 1 0.9 0.8 0.3 -0.4 0.6 0.3 -0.8 -0.6 0.2 -0.4
C2075 0.9 0.8 1 1 0 -0.8 0.5 -0.3 -0.6 0 -0.3 -0.8
770 0.3 -0.4 0 -0.8 1 1 0.9 0.8 -0.8 -0.6 0.3 1
K20c 0.6 0.3 0.5 -0.3 0.9 0.8 1 1 -1 -1 -0.1 0.8
750 -0.8 -0.6 -0.6 0 -0.8 -0.6 -1 -1 1 1 0 -0.6
980 0.2 -0.4 -0.3 -0.8 0.3 1 -0.1 0.8 0 -0.6 1 1

31

3.2.1 Model Construction Using MTL

The feature concatenation strategy for multitask learning appends device features to

input features and builds an SVM model based on this new training dataset. More formally,

let there be M source architectures and N training inputs. Further, let {a1,a2, ...,aM}

denote device feature vectors for each of the M source architectures. Then, for a given

source architecture s, the corresponding training set is

Ts = {([x1 ◦ as], ys1), . . . , ([xN ◦ as], ysN)}

where {x1, . . . ,xN} is the set of N input feature vectors from the training set, and each

ysi denotes the label (best variant) for training input i on architecture s; [◦] denotes vector

concatenation. The full training set is then T =
⋃M
s=1 Ts, which is used to train an SVM

classifier. During testing, the device features of the target architecture are concatenated

with the input features before querying the model.

3.2.2 Utilizing the Full Set of Device Features

A straightforward solution to the architectural tuning problem is to feed the entire device

feature set to the multitask learner when it builds the variant selection model for the target.

In this subsection, we describe how this naïve strategy works.

3.2.2.1 Source Architecture Side

On the source architectures, when the user invokes the autotuning system, input features

and corresponding variant labels are collected automatically, as in the original Nitro system.

This information is also recorded in a repository, to be retrieved when needed by target

architectures. The device feature values for the source architecture in question are also

collected and recorded in the repository.

3.2.2.2 Target Architecture Side

On the target architecture, the user invokes a function in the autotuner, which auto-

matically (1) retrieves the data collected from the source architectures from the repository,

and (2) collects device feature values of the target. Each training input from the source

architectures is of the form 〈I, v〉, where I represents an input feature vector and v represents

the label of the best variant for that input. Using this together with device feature values for

each source architecture, a variant selection model for the target architecture is constructed

as explained in Section 3.2.1.

32

3.2.3 Profile Device Feature Selection (P-DFS)

With a restricted set of source architectures, extraneous device features can confuse the

multitask learner, as demonstrated in Section 3.5.2. We now describe an improvement over

using the full set of device features called profile DFS (P-DFS), which uses the profiling

data of the variants of a computation to predict the device features most relevant to that

computation.

3.2.3.1 Application Proxies

An application proxy is a small program that takes an intensity value φ as input, ranging

from 0 to 5, and produces a GPU kernel with roughly φ * 20% instructions of a particular

kind. The first column of Table 3.3 lists the application proxies used by our system. Thus,

the SP-GFLOP proxy generates kernels with single-precision floating point instructions, the

ATOMIC proxy generates kernels with atomic add instructions, and so on. As a concrete

example, when the SP-GFLOP proxy is provided an intensity value of 2, the proxy generates a

CUDA kernel with roughly 40% single-precision floating point arithmetic instructions. The

following code snippet shows the generated kernel code:
// 6 loads and stores, 4 floating-point instructions

A[i] = A[i+1]*beta + alpha;

A[i+1] = A[i+2]*beta + alpha;

A[i+2] = A[i+3];

Here, A is an array of type float32, alpha and beta are scalars (also of type float32), and

i is the array index.

Each proxy Pj , where j ranges from 1 to 5 (total number of proxies) is associated with

a set of device features Fj , representing the hardware component(s) that it stresses. The

ATOMIC proxy, for example, is associated with the shared_atomic and global_atomic features.

The first and last columns in Table 3.3 list these associations for each proxy.

3.2.3.2 Application Proxy Profiling

For each proxy Pj , the system automatically collects tuples of the form 〈Cφj , φ〉, where

Cφj represents the profiling data of a single run of proxy Pj , and φ is the intensity with

which it is run. Each proxy has a subset of relevant profiling metrics, which are also listed

in Table 3.3 (column 3). Running a proxy at every intensity from 0 to 5, we obtain a set

of 〈Cφj , φ〉 tuples that can be used to train a machine learning model. A model is built for

every proxy, which can then be queried with profiling data of code variants.

33

Table 3.3: GPU application proxies with corresponding profiling metrics and device
features.

Proxy Description Profiling Metrics Device Features
SP-GFLOP Single precision floating-point flop_count_sp, inst_fp_32,

flop_sp_efficiency

peak_gflops_sp,

cuda_cores, clock_rate

DP-GFLOP Double precision floating-
point

flop_count_dp, inst_fp_64,

flop_dp_efficiency

peak_gflops_dp,

cuda_cores, clock_rate

ATOMIC Atomic operation latency atomic_transactions_per_-

request, atomic_-

transactions, l2_atomic_-

transactions, l2_atomic_-

throughput, atomic_-

throughput

global_atomic,

shared_atomic

MEM-BW Global memory bandwidth l1_cache_global_hit_rate,

l1_cache_local_hit_rate,

gld_transactions,

gst_transactions,

local_load_transactions,

local_store_transactions,

gld_transactions_per_-

request,

gst_transactions_per_-

request,

local_load_transactions_-

per_request, local_store_-

transactions_per_request,

stall_memory_dependency,

gld_efficiency,

gst_efficiency,

l2_l1_read_hit_rate,

l2_read_transactions,

l2_write_transactions,

dram_read_transactions,

dram_write_transactions,

l2_l1_read_transactions,

l2_l1_write_transactions,

l2_utilization

peak_gbps, mem_clock_rate,

mem_bus_width,

l2_cache_size

SH-MEM-BW Shared memory bandwidth shared_load_transactions,

shared_store_transactions,

shared_load_transactions_-

per_request,

shared_store_throughput

shared_mem_per_block

3.2.3.3 Source Architecture Side

The P-DFS approach requires collecting the following data on at least one source ar-

chitecture: (1) profiling metrics Cv of each code variant v on each training input; and (2)

profiling metrics of application proxies at different intensities 〈Cφj , φ〉. Thus, in addition to

invoking the autotuner as described in Section 3.2.2, the user is required to initiate profiling

data collection. This automatically collects all the required profiling data and stores it in

the repository.

34

3.2.3.4 Target Architecture Side

On the target, the construction of variant selection models proceeds as in Section 3.2.2.

However, this time, only device features selected by the P-DFS system are used for training

the variant selection model.

Algorithm 1 provides an overview of the P-DFS process. The profiling data for the

proxies at various intensities 〈Cφj , φ〉 are first retrieved from the repository. These are then

used to construct a set of models, one for each proxy. If we denote the model for proxy Pj

as λj , then querying λj with the profiling metrics of a variant Cv will yield the intensity

value corresponding to Pj for the variant. By querying each proxy model using the profiling

data of the variants in the computation (also retrieved from the repository), and examining

the predicted intensity values, the best proxies can be found. These are recorded for each

input and in the final step, a majority voting scheme is used to select a global best set of

proxies. The device features associated with the winning proxies (last column of Table 3.3)

are returned as output of the P-DFS system.

3.2.4 Cross-Validation Device Feature Selection (CV-DFS)

Although device features obtained as a result of P-DFS are relevant to the computation

in question, there may still be extraneous features that confuse the variant selection model

on the target. To obtain an even more pruned and relevant set of device features, we

Algorithm 1 Profile Device Feature Selection
1: . V: Set of variants
2: . I: Set of training inputs
3: . P: Set of application proxies
4: global_best ← {}
5: for v ∈ V do
6: . For each kernel in variant v
7: for k ∈ kernels[v] do
8: . For each training input
9: for i ∈ I do

10: intensity ← {}
11: for p ∈ P do
12: . Profiling data for kernel k on input i
13: t ← profile[k, i]
14: . Predict intensity for proxy p on profile
15: intensity[p] = intensity-predict(t, p)
16: best_proxies[i] = {x : intensity[x]is highest}
17: . Add best proxies across inputs to global best
18: global_best ∪ = majority-vote(best_proxies)

return global_best

35

employ a cross-validation DFS (CV-DFS) strategy. An overview of CV-DFS is provided in

Algorithm 2.

CV-DFS is performed on the target architecture, and does not require any extra data

collection on the source architectures (over P-DFS). The algorithm proceeds by assigning

one of the source architectures as a temporary target (Line 9 in Algorithm 2). Then, with the

remaining source architectures, every subset of device features (currently restricted to size

three) is exhaustively used to build a variant selection model for the temporary target (Line

18, mtl-train function), and performance of this model on the temporary target’s training

data is evaluated (Line 20, the predict function). This process is iteratively performed

for each source architecture, and the k device features that perform best over all source

architectures are chosen. By default, k is set to one (i.e., return the best device feature).

CV-DFS relies on the assumption that device features that yield good prediction perfor-

Algorithm 2 Cross-Validation Device Feature Selection
1: . S: Set of source architectures
2: . D: Set of device features from P-DFS
3: global_best ← {}
4: . For each source architecture
5: for s ∈ S do
6: best_accuracy ← 0
7: best_set ← ∅
8: . Assign a temporary target
9: target ← s

10: sources ← S − {s}
11: Ts ← {training-data(x): x ∈ sources}
12: Tt ← training-data(target)
13: for d ∈ subsets[D] do
14: . Get device feature values of source and target
15: DFs ← {df-values(d, x): x ∈ sources}
16: DFt ← df-values(d, target)
17: . Train MTL model using Ts and DFs
18: model ← mtl-train(Ts, DFs)
19: . Predict and calculate accuracy w.r.t. Tt
20: accuracy ← predict(model, Tt, DFt)
21: if accuracy > best_accuracy then
22: best_accuracy ← accuracy
23: best_set ← d

24: . Record best features and their frequencies
25: global_best ∪ = best_set
26: . Return the k most frequently occurring features
27: return most-frequent(global_best, k)

36

mance on source architectures are likely to be good predictors on the target for the same

computation. As demonstrated in Section 3.5, this assumption holds for most applications.

3.3 Implementation
As described in Chapter 2, the Nitro framework provides C++ and Python interfaces

for code variant tuning. Variants, input features, and optional constraints are specified

using the C++ interface within the application, while a separate Python script is used to

customize the tuning process. For the system described in this chapter, we extend Nitro’s

Python tuning interface with additional functions and options.

The function tune_from_source automatically builds models for the target architecture

using source training data and device feature values. We have implemented a storage system

for variant training data using Redis [39]. The variant name, together with the device

identifier, is used to index into the store, where the variant training data, optional profiling

data (for both the variants and proxy applications), and device feature values are kept. The

tune_from_source function automatically retrieves the right data and builds the models.

Users have the option of toggling both P-DFS (using the profiling_based_dfs knob) and

CV-DFS (using the search_based_dfs knob). If P-DFS is enabled, then per-input profiling

data must also be collected on at least one of the source architectures (using the profile

function). Listings 3.1 and 3.2 provide examples of how this interface is used to tune a

Histogram computation with 6 code variants on the source and target sides, respectively.

The record flag (line 6 in Listing 3.1), when set, instructs the system to record training

data and device feature values in the store during the tuning process. In Listing 3.2, the

call to tune_from_source automatically retrieves these data for all the source architectures

and builds a model for the target architecture.

1 from nitro import *
2 import glob

3
4 histogram = code_variant("histogram", 6)

5 # Record training data in store

6 histogram.record = True

7 histogram.device_id = "gtx_480"

8 # Create autotuner instance

9 tuner = autotuner("histogram")

10 inputs = glob.glob("training/*.jpg")

11 tuner.set_training_args(inputs)

12 # Tune for current architecture

13 tuner.tune([histogram])

Listing 3.1: Histogram tuning example - source architecture.

37

1 from nitro import *
2
3 histogram = code_variant("histogram", 6)

4 histogram.profiling_based_dfs = True

5 histogram.search_based_dfs = True

6 # Create autotuner instance

7 tuner = autotuner("histogram")

8 # Build model from source data

9 tuner.tune_from_source([histogram])

Listing 3.2: Histogram tuning example - target architecture.

3.4 Benchmarks
Table 3.4 lists the benchmarks we use to evaluate our system’s effectiveness, including a

description of the set of variants, the features used, and number of inputs for training and

test datasets. All of these benchmarks are derived from high-performance CUDA libraries

that already included code variants. By using existing high-performance libraries, we are

able to focus the experiment on the small amount of additional code required to apply our

automated system to these benchmarks. The training and test inputs come from standard

sources, as described, and the training inputs are not included in the test inputs. Further,

we choose training inputs such that all variants are well represented in the training set for

each benchmark.

3.4.1 Histogram

Histograms are very commonly used as building blocks in a number of domains, espe-

cially image processing. We use the variants implemented in the high-performance CUDA

Unbound (CUB) library [11]. We evaluate three variants and two grid-mapping strategies,

thus giving rise to six code variants. We use three features. We construct a 256-bin histogram

for grayscale images, with pixel values ranging from 0 to 255. For training and testing, we

use the images from the INRIA Holidays Dataset [35] (converted to grayscale). Out of the

1491 images in the dataset, 200 are used for training and the rest for testing.

3.4.2 Sparse Matrix-Vector Multiplication (SpMV)

SpMV is used in many iterative methods for solving large-scale linear systems. For this

experiment, we use the variants provided by the CUSP library [9]. We use 5 features and a

training set consisting of 54 matrices from the UFL Sparse Matrix collection [28]. For the

100 matrices in the test set, we selected 10 matrices each from a set of 9 groups in the UFL

collection at random (with the exception of the Williams group, which has only 7 matrices

in the UFL collection), and generated 13 matrices related to stencils.

38

Table 3.4: Variants and features used for each benchmark. The last column lists the sizes
of training and testing sets.

Benchmark Variants Description Features Description (#Training,8
#Testing)8I/Ps

CSR,%CSR&VEC
Performs%SpMV%on%CSR&formatted%matrices.
CSR%assigns%a%thread%to%each%row.
CSR&Vec%assigns%a%warp%to%each%row.

DIA,%ELL Perform%SpMV%on%DIA%and%ELL%formatted%matrices.
CG&Jacobi,%CG&Bjacobi,%
CG&Fainv

Conjugate%gradients%method%with%Jacobi,%Blocked%Jacobi%
and%Factorized%Approximate%Inverse%preconditioners

BiCGStab&Jacobi
BiCGStab&BJacobi
BiCGStab&Fainv

BiConjugate%gradients%Stabilized%method%with%Jacobi,%
Blocked%Jacobi%and%Factorized%Approximate%Inverse%
preconditioners

EC&Fused,%EC&Iterative
Expand%incoming%vertex%frontier,%filter,%and%produce%
outgoing%vertex%frontier.%Fused%version%invokes%single%
kernel%that%steps%through%BFS%iterations.%Iterative%
version%invokes%a%separate%kernel%for%each%BFS%iteration.

CE&Fused,%CE&Iterative Contract%incoming%edge%frontier,%filter,%and%produce%
outgoing%edge%frontier.

2&Phase&Fused
2&Phase&Iterative

Isolates%vertex%expansion%and%edge%contraction%
workloads%into%separate%kernels

Sort&ES,%Sort&Dynamic
Sort%data%first,%and%then%do%a%quick%run&length%detection.%
Even&Share%(ES)%version%assigns%an%even%share%of%inputs%
to%thread%blocks,%dynamic%uses%a%queue.

Global&Atomic&ES
Global&Atomic&
Dynamic

Compute%Histogram%using%global%atomic%add%operations.%

Shared&Atomic&ES
Shared&Atomic&
Dynamic

Compute%Block&level%Histogram%using%shared%memory%
atomicAdd,%and%then%reduce%to%final%Histogram.

Merge%Sort Merge%sort%from%ModernGPU%library.

Locality%Sort Locality%sort%from%ModernGPU%library.

Radix%Sort Radix%sort%from%CUB.

R2C,%C2R R2C,%C2R%variants%from%inplace%library

Skinny%R2C
Skinny%C2R R2C,%C2R%specialization%for%skinny%matrices

Sort

N

NBits

#AscSeq

Input%size.

32%or%64%bits.

#%Ascending%sub&sequences.

(120,%600)

Transpose

M, N

RowMajor

CoPrime

Number%of%rows,%columns.

Is%in%row&major%layout.

Are%M%and%N%co&prime.

(194,%1000)

BFS
AvgOutDeg, Deg-SD,
MaxDeviation

#Vertices, #Edges

Features%related%to%graph%out&
degree.

Number%of%vertices%and%
edges.

(20,%138)

Histogram
N, N/#Bins

SubSampleSD

Sequence%of%length%and%
average%length.%

Standard%deviation%of%sub&
sample.

(200,%1291)

SpMV

AvgNZPerRow, RL-
SD, MaxDeviation

DIA-Fillin, ELL-
Fillin

Features%related%to%row%
length.

Fillin%ratio%for%DIA%and%ELL%
formats.

(54,%100)

Solver

NNZ, #Rows

Trace

DiagAvg, DiagVar,
DiagDominance

LBw

Norm1

Number%of%nonzeros%and%
rows.

Trace%of%a%matrix.

Features%related%to%diagonal%
elements%of%a%matrix.

Left%bandwidth%of%a%matrix.

1&norm%of%a%matrix.

(26,%100)

39

3.4.3 Sort

We use 3 high-performance GPU sorting algorithms, Merge Sort, Locality-Optimized

Segmented Sort, and Radix Sort, as variants for this benchmark. The Merge and Locality

Sorts are part of the ModernGPU [36] library of GPU primitives, while the Radix Sort

implementation is provided in CUB [11].

Sorting is performed on 32- and 64-bit floating point keys. We train a combined model

for both data types and report performance achieved on a test set consisting of both types of

data. The training set consists of 60 sequences for each data type, thus giving us a total of

120 instances. For testing, we use a total of 600 sequences, 300 for each data type. Further,

each of the 300 instances is divided into 3 categories, 100 consisting of uniformly random

keys, 100 consisting of reverse sorted keys, and 100 consisting of almost sorted keys. The

“almost sorted” category is generated by taking a sorted sequence and randomly swapping

20-25% of the keys. Key lengths are varied from 100K to 20M keys.

3.4.4 Breadth-First Search (BFS)

BFS is used as a basis for algorithms that analyze sparse relationships (such as social

networks and electronic design automation) represented as graphs. Variants are selected

from a set of highly optimized BFS implementations for GPUs described in [33], part of

a larger set of GPU primitives provided in the Back40 Library [34]. We consider a set of

six variants provided in the library, which are designed for different types of input graphs.

We use a set of five features. The training set for BFS consists of a set of 20 graphs and

the test set consists of all the graphs in the DIMACS10 group in the UFL Sparse Matrix

collection. We run 100 randomly sourced BFS traversals for each graph to evaluate each

variant. Further, we use traversed edges per second (TEPS) as the optimization metric.

3.4.5 Linear Solvers and Preconditioners

Many large-scale scientific simulations such as computational fluid dynamics (CFD)

and structural mechanics [29] involve solving partial differential equations (PDE) systems.

Typically, solutions to a PDE involve solving the underlying sparse linear system using

software toolkits [30], [31]. One of the challenges in effectively using such toolkits is the

selection of an appropriate 〈linear solver, preconditioner〉 combination, as this selection

impacts both the performance and convergence of the computation. For this experiment, we

use six 〈linear solver, preconditioner〉 combinations from the CULA Sparse toolkit [31], which

is a GPU library for solving large sparse linear systems. Features used for this benchmark

40

are based on the work by Bhowmick et al. [32]. We use symmetric sparse matrices from [28]

to represent sparse linear systems.

3.4.6 Matrix Transposition

In-place transposition of square matrices is a well-studied problem. Transposition of a

nonsquare matrix is a much more involved process, requiring O(mn logmn) work. Catanzaro

et al. [40] describe a set of in-place matrix transposition algorithms which perform the

operation in O(mn) time. These algorithms are packaged as an open-source library [41].

We use four variants from this library for our experiment: two for general row-to-column

and column-to-row transposition, and another two specialized for skinny matrices. We use

four features related to the dimensions of the matrix. Matrix dimensions are chosen from a

uniform-random distribution with the constraint that the matrix fits in the memory of the

GTX 480 GPU (the GPU with lowest memory capacity). The matrices are populated with

64-bit double precision values. 194 such matrices are used for training and 1000 for testing.

3.5 Results
We run our experiments on six NVIDIA GPUs characterized by the device features in

Table 3.1: (1) GeForce GTX 480, (2) Tesla C2075, (3) GeForce GTX 770, (4) Tesla K20c,

(5) GeForce 750 Ti, and (6) GeForce GTX 980. As shown in Table 3.1, these graphics cards

span three GPU architecture families: Fermi, Kepler, and Maxwell. We use CUDA Toolkit

version 6.5 for our experiments (except for Solvers, which requires CUDA 6.0 due to CULA).

The host system is an Intel Core i7-4770 CPU (3.4 Ghz) with 32 GB of RAM. GPU profiling

metrics are collected using the nvprof tool. Each profiling metric is normalized with respect

to the total number of issued instructions in the GPU kernel.

3.5.1 Architecture Sensitivity of Benchmarks

We first ask the question whether architecture differences significantly impact code

variant selection. For this purpose, we identify the best variant (found through exhaustive

search) for each input in the testing set across all benchmarks and architectures. Figure 3.2

provides a measurement of the architectural sensitivity of each benchmark. Here, the x-axis

is the set of benchmarks, and the y-axis is the percentage of test inputs for which at least

one architecture selects a different best variant than the others. In other words, it is the

percentage of test inputs for which the exact same variant of the benchmark was not selected

across all architectures. Figure 3.3 is similar, except it depicts architectural sensitivity

of benchmarks within GPUs of each generation - namely, Fermi, Kepler, and Maxwell.

41

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Histogram	 SpMV	 Sort	 BFS	 Solver	 Transpose	

%
	M

ism
at
ch
	a
cr
os
s	a

rc
hi
te
ct
ur
es
	

Architecture	Sensi-vity	

Figure 3.2: Architecture-sensitivity of each benchmark. The y-axis represents the percent-
age of test inputs for which at least one architecture selects a different best variant than the
others.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Histogram	 SpMV	 Sort	 BFS	 Solver	 Transpose	

%
	M

ism
at
ch
	a
cr
os
s	a

rc
hi
te
ct
ur
es
	

Architecture	Sensi-vity	within	GPU	Genera-ons		

Fermi		 Kepler		 Maxwell	

Figure 3.3: Architecture-sensitivity within GPUs of the same generation.

Figure 3.3 shows that differences in variant selection are usually less pronounced within the

same architectural family, but not always. Further data are shown in Table 3.5, where each

subtable represents a benchmark and a row represents the distribution of variant selection

(via exhaustive search) across all test inputs for a particular architecture. We use these two

figures and the table in the remainder of this subsection.

From one generation to the next, new architecture features and machine configurations

may dramatically affect variant selection (e.g., support for atomic operations). But within

a single generation, different selections are usually attributed to differences in (1) raw

42

Table 3.5: Variant selection histograms across different benchmarks and architectures.
Each subtable represents the distribution of variant selections across test data for a particular
benchmark.

SpMV
CSR CSR-VEC DIA ELL

GTX 480 0.00 50.52 19.59 29.90
C2075 0.00 54.64 19.59 25.77

GTX 770 0.00 49.48 19.59 30.93
K20c 3.09 48.45 18.56 29.90

750 Ti 4.12 45.36 20.62 29.90
GTX 980 0.00 56.70 18.56 24.74

BFS
EC-Fused EC-Iter CE-Fused CE-Iter 2P-Fused 2P-Iter

GTX 480 0.00 0.70 90.91 4.90 1.40 2.10
C2075 0.00 0.71 90.00 7.86 1.43 0.00

GTX 770 0.71 59.29 0.71 37.86 0.00 1.43
K20c 24.64 0.00 75.36 0.00 0.00 0.00

750 Ti 13.04 0.00 86.96 0.00 0.00 0.00
GTX 980 4.29 0.00 94.29 0.00 1.43 0.00

Transpose
R2C C2R Skinny R2C Skinny C2R

GTX 480 44.10 55.10 0.00 0.80
C2075 45.50 53.80 0.00 0.70

GTX 770 42.50 56.90 0.00 0.60
K20c 25.10 74.30 0.00 0.60

750 Ti 45.00 54.40 0.00 0.60
GTX 980 32.90 66.40 0.00 0.70

Solver
CG-J CG-BJ CG-FAI BiCGStab-J BiCGStab-BJ BiCGStab-FAI

GTX 480 12.90 15.05 6.45 35.48 23.66 6.45
C2075 13.98 12.90 6.45 32.26 30.11 4.30

GTX 770 6.45 10.75 13.98 35.48 23.66 9.68
K20c 11.83 13.98 5.38 36.56 24.73 7.53

750 Ti 18.28 11.83 6.45 34.41 16.13 12.90
GTX 980 12.90 16.13 7.53 37.63 17.20 8.60

Sort
Locality Merge Radix

GTX 480 3.50 27.17 69.33
C2075 7.50 47.00 45.50

GTX 770 2.50 26.00 71.50
K20c 1.67 36.00 62.33

750 Ti 33.50 4.50 62.00
GTX 980 39.00 17.17 43.83

Histogram
Sort-ES Sort Dynamic GA-ES GA-Dynamic SA-ES SA-Dynamic

GTX 480 0.64 36.30 0.00 0.00 7.13 55.93
C2075 0.00 33.73 0.00 0.00 26.92 39.34

GTX 770 0.08 73.56 4.49 0.40 0.24 21.23
K20c 0.00 85.18 0.08 0.00 4.49 10.26

750 Ti 0.00 0.00 0.00 0.00 97.84 2.16
GTX 980 0.00 0.00 0.00 0.00 0.16 99.84

performance metrics (clock speed, memory bandwidth, floating point performance, etc.),

or (2) parallelism (number of cores). These architecture differences are captured in the

device features of Table 3.1. From Figures 3.2 and 3.3 and Table 3.5, we see that Histogram

reflects significant differences both across and within an architecture generation. The

Maxwell generation devices (GTX 980 and 750 Ti) use the shared-atomic variants (SA-ES

and SA-Dynamic) almost exclusively, due to their low latency of shared memory atomics.

However, these two devices rarely select the same shared-atomic variant, with the GTX

980 preferring SA-Dynamic and 750 Ti preferring SA-ES for most inputs. The Dynamic

variants treat the input as a queue and atomically dequeue work in tiles for processing.

Due to the reliance of these variants on atomics, the GTX 980 prefers them compared to

the 750 Ti (the GTX 980’s performance on atomics is nearly twice that of the 750 Ti,

as Table 3.1 shows). The Kepler and Fermi devices predominantly use the Sort-Dynamic,

SA-ES and SA-Dynamic variants, with the Kepler devices (GTX 770 and K20c) preferring

the sorting-based variant over the shared-atomic ones. We believe that the slightly lower

performance of shared atomics on Kepler when compared to the Fermi devices (GTX 480

and C2075) is the reason for this.

For BFS, most of the differences arise on the GTX 770 architecture. Specifically, the

EC-Iterative and CE-Iterative variants are rarely selected by any architecture except the

GTX 770. As described in Table 3.4, the Iterative variants invoke a separate kernel for each

BFS kernel, while the Fused versions use a single kernel to step through BFS iterations.

43

Notice that l2_cache_size is a relevant device feature for BFS (Table 3.6, second column)

and the GTX 770 has the lowest L2 cache size of all GPUs (Table 3.1). Since doing more

work in a single kernel invocation typically increases L2 cache usage, we suspect that this is

the reason for the GTX 770 preferring the Iterative variants over Fused ones.

Sort and Transpose exhibit architecture sensitivity, but not to the extent shown by His-

togram and BFS and mostly across generations. The Maxwell generation of devices prefers

to pick Locality sort over Merge sort, when compared to devices from other generations. The

lower cost of atomic operations on Maxwell is most likely the reason for this, as Locality

sort uses a dynamic work queue from which tasks are peeled off atomically. For Transpose,

the bigger devices from the Kepler and Maxwell generations (the K20c and the GTX 980,

respectively) tend to slightly prefer the C2R variant over R2C compared to other cards.

Finally, we notice from Table 3.5 that for the SpMV and Solver benchmarks, variants

tend to be picked uniformly across architectures. We believe the primary reason for this

is the fact that SpMV and Solver variants are optimized for various sparsity patterns of

the input matrix and not necessarily for architecture-specific features, thus making them

predominantly input-dependent. We were able to confirm this for the SpMV variants in the

CUSP library by analyzing their source code, but not for the related Solver variants from

Table 3.6: Best device features for each benchmark, proxies predicted by P-DFS, and the
best features chosen by CV-DFS.

Benchmark Best Device Fea-
tures

Proxies predicted
by P-DFS

Best Feature by
CV-DFS

Histogram peak_gbps,

shared_atomic,

mem_bus_width

MEM-BW, ATOMIC shared_atomic

SpMV peak_gbps, mem_speed MEM-BW, SH-MEM-BW peak_gbps

Sort global_atomic,

l2_cache_size,

shared_atomic

MEM-BW, ATOMIC shared_atomic

BFS global_atomic,

shared_atomic,

l2_cache_size,

peak_gbps

MEM-BW, ATOMIC,

SH-MEM-BW

shared_atomic

Solvers global_atomic,

shared_atomic,

l2_cache_size,

peak_gbps

MEM-BW, ATOMIC,

SH-MEM-BW

shared_atomic

Transpose global_atomic,

shared_atomic,

l2_cache_size,

peak_gbps

MEM-BW, SH-MEM-BW peak_gbps

44

CULA, which are closed-source.

3.5.2 Prediction Performance

First we look at how well device feature selection detects the relevant features for

each benchmark. Table 3.6 shows the best subset of device features found by exhaustive

search and by cross-validation search for each benchmark in the second and fourth columns,

respectively. The third column shows the application proxies predicted by P-DFS for each

benchmark. This exhaustive search finds the subset that yields best prediction accuracy on

the target’s test data. Since cross-validation DFS may predict a different subset of device

features for every target, the last column of the table shows the device feature that occurs

most frequently among all targets. We notice that P-DFS correctly predicts the proxies

relevant to each benchmark. For example, it predicts that atomics are relevant to Histogram

and BFS. Also, cross-validation search, guided by proxies found by P-DFS, discovers most

of the important device features or nearby ones found via exhaustive search for all bench-

marks. Another interesting observation is that although all the benchmarks we consider are

predominantly memory bandwidth-bound, some benchmarks, such as Histogram and BFS,

contain variants that rely on the use of global- and shared-memory atomics. This reinforces

our earlier point that the magnitude of architectural similarity is a function of the device

features relevant to a benchmark’s variants, and is not the same across all benchmarks.

Now we examine how well the different variant selection models derived from multitask

learning compare in their effectiveness against the original Nitro system (training and testing

performed on the target architecture) and exhaustive search. In Figure 3.4, the benchmarks

appear on the x-axis, with each bar representing a different target architecture (the remaining

5 architectures are used as sources). The y-axis shows percentage performance achieved

compared to exhaustive search, as defined in the previous subsection. Bars labeled Full

Set represent performance achieved when multitask learning uses all device features, while

0	

20	

40	

60	

80	

100	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

Histogram	 SpMV	 Sort	 BFS	 Solver	 Transpose	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Architectural	Tuning	Performance	
GTX	480	 C2075	 GTX	770	 K20c	 750	Ti	 GTX	980	

Figure 3.4: Device feature selection performance.

45

the P-DFS and CV-DFS bars represent performance achieved by using device features

selected by the profile DFS, and profiling followed by cross-validation DFS, respectively.

While performing cross-validation DFS, we restrict the maximum size of each device feature

subset to 3, since we found that increasing this beyond 3 rarely resulted in performance

improvements. Also, we use the default value of 1 for the CV-DFS parameter k (number

of most frequently occurring device features) in our evaluation. While we discovered that

higher values suited certain benchmarks (for example, Histogram performs 2.5% better on

average across all architectures when k is set to 2), we avoid varying k on a per-benchmark

basis to remain consistent.

We expected the original Nitro bar would be an upper bound on performance, as it is

training on the target architecture. Indeed we see a modest performance loss for Histogram.

Performance is comparable for Transpose and Sort for all architectures, and BFS for Fermi

and Maxwell generations but not Kepler. The reasons for these deviations in performance

were explained in Section 3.5.1, but effectively they indicate instances where the learning

phase did not see similar scenarios. Surprisingly, multitask learning actually outperforms

the original Nitro for the Solver and SpMV benchmarks on some architectures. This is a

significant result, considering the fact that we performed no training runs on the target.

It is an indication that multitask learning is inferring useful relationships between similar

architectures, thus effectively increasing the amount of training data available for model

training compared to using only one architecture.

Now consider the differences between the three DFS strategies. Cross-validation yields

the best performance for Histogram, SpMV, and Sort on almost all architectures, and is

comparable to the other two DFS approaches for Solver and Transpose. The full set is

preferable for the K20c version of BFS. The effect of using incorrect device features is more

pronounced on a restricted set of source architectures. Space does not permit us to present

our system’s performance on all source:target combinations for all the benchmarks. However,

to demonstrate how sensitive the performance is to the correct feature set, we perform the

same experiment as above for Histogram, but iteratively remove one architecture from the

total set, resulting in 4 source architectures instead of 5. This seemingly small change has

substantial effects on performance.

Figure 3.5 shows the results for this experiment. Here, each subfigure shows the perfor-

mance of MTL with different device feature sets when a specific GPU is excluded from the list

of architectures. In this experiment, we also compare against two simpler reference schemes:

random selection and majority vote (Random and Majority in Figure 3.5, respectively).

46

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	GTX	480	Excluded	

C2075	 GTX	770	 K20c	 750	Ti	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	GTX	770	Excluded	

GTX	480	 C2075	 K20c	 750	Ti	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	750	Ti	Excluded	

GTX	480	 C2075	 GTX	770	 K20c	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	GTX	980	Excluded	

GTX	480	 C2075	 GTX	770	 K20c	 750	Ti	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	
%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	K20c	Excluded	

GTX	480	 C2075	 GTX	770	 750	Ti	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	C2075	Excluded	

GTX	480	 GTX	770	 K20c	 750	Ti	 GTX	980	

Figure 3.5: Device feature selection performance for Histogram on a restricted set of
architectures.

Random simply chooses a valid variant uniformly at random for each test input. It indicates

the extent of input sensitivity, as it works well when variants have similar performance

across inputs. We report the average of 1000 runs in this case for consistent results. Majority

chooses the most frequently predicted variant among all source architectures for a given input

as the predicted variant for the target. To accomplish this, a variant selection model for

each source architecture is built separately using the original Nitro system. Since these two

schemes do not make use of any architectural characteristics, their performance (especially

on a set of restricted architectures) can be used to indicate and quantify the importance of

device feature selection.

For all the source:target combinations, we notice a marked improvement in performance

for P-DFS and CV-DFS over Full Set, demonstrating the importance of device feature

selection. Further, the performance of CV-DFS is at least comparable to P-DFS, and often

significantly better, especially on Fermi and Maxwell. In comparison, Random and Majority

fare relatively poorly. In particular, the tendency of Maxwell devices (750 Ti and GTX 980)

to strongly prefer the shared atomic variants over others (Table 3.5) seems to confuse the

majority vote scheme. This is confirmed by the fact that removal of either of these devices

improvesMajority performance on all devices except the other device in the same generation.

CV-DFS proves to be much more robust, and shows consistent performance across devices,

even when devices from the same generation are removed. Overall, we notice that while

majority vote performs well in simple cases, knowledge of architectural characteristics via

device features is critical for robust performance.

47

3.5.3 Device Feature Selection Overhead

Table 3.7 shows the overhead incurred by P-DFS and CV-DFS (since the repository

is stored on the local network, we do not include communication overheads). As the table

shows, P-DFS is fastest, since it primarily involves construction of the models for the various

proxies, followed by querying the models on the profiling data of the code variants. CV-DFS

takes longer, since all subsets of size <= 3 must be evaluated by the algorithm. Note that

CV-DFS takes less time in comparison to gathering training data from source architectures,

as we do not evaluate each 〈I, v〉 pair.

The CV-DFS strategy has a number of parameters that can be adjusted by the user. The

value of these parameters can greatly affect the time taken to execute CV-DFS. Users can

adjust the training subset size, feature subset size and the number of source architectures

to use for CV. Reducing the values of any of these aforementioned parameters significantly

reduces CV-DFS execution time. In our experiments we used the full training set, and

feature subset sizes from 1 to 3 on all the source architectures.

3.5.4 Results Summary

Overall, multitask learning produces results comparable to training on the target ar-

chitecture in most cases, and even better results in a few cases. It falls short when the

training data fail to capture a sufficiently similar scenario, and it improves from additional

training data available from multiple sources. Finally, we observe that device feature

selection improves performance particularly when fewer training data are available, and

that in such cases, CV-DFS produces superior results but introduces more overhead than

other approaches.

3.6 Summary
This chapter has presented a novel approach to cross-architecture autotuning, which uses

multitask learning to develop a model on a target architecture from training on different

Table 3.7: Device feature selection overhead (time in seconds).

P-DFS CV-DFS
Histogram 4.70 100.50
SpMV 3.36 12.42
Sort 4.14 56.61
BFS 3.89 30.27
Solver 4.59 36.80
Transpose 4.26 48.24

48

source architectures. We demonstrated that device feature selection is valuable in building a

successful code variant selection model on new architectures, and discussed the strengths and

limitations of the approach. Finally, on a set of benchmark applications and a collection of six

NVIDIA GPUs from three distinct architecture generations, we achieve performance results

comparable to the previous approach of tuning for a single architecture without having to

repeat the learning phase, demonstrating the promise of multitask learning for addressing

performance portability across architectures. We view this work on variant selection as an

initial step towards a more general approach to learning an optimization model on one set

of resources and adapting to a different set of resources at runtime. Many questions remain:

improving models for outliers, examining very different architectures, and other autotuning

problems such as parameter selection. Tuning across different architecture classes such as

CPU and GPU is particularly challenging, as higher level device features (e.g., gflops/gbps

ratio) and profiling metrics that remain valid across architecture classes must be used. These

challenges will become increasingly important to future architectures, as complexity grows

and systems become more dynamic.

CHAPTER 4

TUNING FOR ENERGY AND POWER

EFFICIENCY

Multiobjective optimization refers to the problem of optimizing a vector ~f = 〈f1, ..., fr〉

of optimization functions of r criteria. While a number of techniques and algorithms for

multiobjective optimization have been proposed in the literature, there have been relatively

few autotuning frameworks that take multiobjectivity into account [42]–[44]; among these,

none support tuning with respect to the input dataset and target architecture.

In this chapter, we describe two strategies for supporting multiobjective code variant

tuning in Nitro. First, we describe an interface for defining custom aggregation metrics.

These enable users to consolidate various optimization criteria such as performance and

energy/power efficiency into a single metric, which Nitro then uses to automatically select

among code variants during the training phase. Second, we present a strategy for selection

of core clock frequencies in addition to code variants.

To evaluate the effectiveness of our approach, we use GPU sorting as a case study; specifi-

cally, we tune two high-performance GPU sorting implementations and up to 25 different core

clock frequencies on two distinct GPU architectures. The resulting tuned implementation

demonstrates improved energy and power efficiency with less than proportional loss in sorting

throughput.

4.1 Multiobjective Tuning in Nitro
An important characteristic of multiobjective optimization problems is that there may

not exist a single alternative which is optimal for all the criteria. Solving a multiobjective

optimization problem involves computing a set of alternatives, each representing a trade-off

among the optimization criteria. The alternatives in this set fulfill two conditions: (1) they

cannot be further improved without worsening at least one of the optimization functions, and

(2) none of them is better than the others for all the objective functions. The alternatives in

this set are referred to as nondominated solutions, and the set itself is defined as the Pareto

50

set. The Pareto set, when only the values of the optimization functions are considered, is

referred to as the Pareto frontier.

Existing multiobjective tuning systems typically convert the multiobjective problem into

a single-objective one using one of two methods: (1) optimize for one particular objective,

but only return solutions that ensure that certain constraints are not violated for the other

objectives, and (2) compute an aggregation of optimization functions (using weights, for

example) and optimize the resulting single-objective function. Some other systems try to

directly approximate the Pareto frontier, and rely on the user to select the final solution

from this space [42]. Since Nitro must compute an optimal solution for each training input,

we avoid techniques such as the latter that rely on continuous user involvement.

4.1.1 Extensions to Autotuning Interface

We add support for multiobjectivity in Nitro through the metric aggregation technique

described above. The new interface requires each code variant to report the correct mea-

surements, which may include performance, power readings, etc., to Nitro (as opposed to

only performance). Next, the programmer provides a function g, which, given the values of

the various optimization functions, computes the aggregated output. Nitro is then able to

automatically use g to consolidate the various measurements reported by code variants into

a single metric and find the best variant corresponding to each training input. Listing 4.1

shows an example aggregation function named tput_over_e for sorting. Given a list of sorting

variants with their corresponding throughput (T) and energy consumption (E) values, this

function returns the variant with the lowest value of the aggregated metric T
E .

4.1.2 Combining Code Variant and Frequency Selection

Dynamic voltage and frequency scaling (DVFS) has been successfully employed to im-

prove the energy and power efficiency of GPU applications [12], [13]. In this work, we

introduce a small set of extensions to Nitro that enables it to predict the best frequency

corresponding to a given input, in addition to the best variant. Programmers first specify

valid frequencies using the tune_frequency function in the autotuning interface. Nitro then

automatically inserts code to set up the correct frequency before a variant is executed,

and collects training data in the form T = {(x1, 〈v1, f1〉), . . . , (xM , 〈vM , fM 〉)}, where each

xi represents an input feature vector and each 〈vi, fi〉 pair represents the best variant

and frequency for that input. T is then split into Tv = {(x1, v1), . . . , (xM , vM)}, and

Tf = {(x1, f1), . . ., (xM , fM)}, which are used to construct variant and frequency selection

models, respectively. At runtime, both the models are queried to obtain the best 〈variant,

51

1 from nitro.autotuner import *
2 from nitro.code_variant import *
3
4 gpu_sort = code_variant("gpu_sort", 3)

5 # Set up aggregation function

6 gpu_sort.set_aggregation_function(tput_over_e)

7 ...

8
9 # The aggregation function takes a list of (i, x1, x2, ...)

10 # tuples, where i is the variant index and x1, x2, ... are

11 # the value(s) to be optimized. The best tuple is returned.

12 def tput_over_e(ls):

13 # Find the variant with lowest value of

14 # throughput/energy. Here, x[1] is the throughput,

15 # and x[2] is energy consumption.

16 return min(ls, key = lambda x: float(x[1])/float(x[2]))

Listing 4.1: Sample aggregation function for optimizing sorting throughput and energy
consumption.

frequency〉 pair for the given input.

4.2 Energy and Power-Efficient GPU Sorting
We evaluate the effectiveness of our system using GPU sorting as a case study. The

following algorithms are used as code variants:

• Merge Sort: Recursively split a list in half, sorting each half, and then merge the

two sorted lists together. The implementation we use is part of the ModernGPU [36]

library of GPU primitives.

• Radix Sort: Successively group keys by individual digits that have the same position

and value. The implementation is from the CUB Library [11].

Additionally, we vary core clock frequencies on the GPUs we consider, as described in

Sections 4.1.2 and 4.3. Lastly, we use the same input features as in the Sort benchmark in

Chapter 2 (see Table 2.3).

4.2.1 Aggregated Metrics for Sorting

As described in Section 4.1, performance, power and energy measurements are combined

into aggregated metrics for code variant and frequency selection. For sorting, we have chosen

to use a set of metrics based on sorting throughput T (measured in keys per second), energy

consumption E (in Joules), and maximum power draw P (in Watts). We explore which

leads to the best reduction in energy or power with the least impact on performance. These

metrics are as follows: T
E ,

T
E2 , T 2

E , T
P ,

T
P 2 , and T 2

P . The best 〈variant, frequency〉 pair

52

is thus the one with the highest value for the given metric. These metrics were selected

because they capture the relationship between throughput and energy or power. Further,

it is straightforward to build a model for code variant selection by consolidating on a single

metric. They also reflect a different assignment of priorities on the various optimization

criteria. For example, T 2

E prioritizes the maximization of throughput over reduction in

energy consumption; in contrast, TE gives equal priority to both. In our experiments, we will

show how the choice of metric affects the balance between performance and power/energy

efficiency.

4.3 Experimental Methodology
As described in Section 4.2, we select among two GPU sorting variants: merge sort (from

the ModernGPU library) and radix sort (from the CUB library). We now describe the target

architectures, core clock frequencies, and input datasets used in our experiments.

4.3.1 Target Architectures

We run our experiments on two different NVIDIA GPUs: the Tesla K80 and the Jetson

TK1. While the K80 is among the highest performing GPUs available today, the TK1 is

representative of lightweight, low-power embedded GPUs.

4.3.1.1 NVIDIA Tesla K80

The NVIDIA Tesla K80 GPU has 26 GPU streaming multiprocessors, for a total of 4992

cores, and 24 GB of memory. It supports 25 core clock frequency settings ranging from 562

Mhz to 875 Mhz in 13 Mhz increments. Two memory frequencies are also supported, but we

do not adjust memory frequency in these experiments because the lower memory frequency

of 324 Mhz is far lower than the peak of 2505 Mhz and is therefore going to perform poorly in

a bandwidth-limited algorithm such as sort. For frequency adjustments and energy/power

measurements on the K80, we created two new libraries: gpu_freqlib [45], and gpu_powermon,

respectively, based on the NVIDIA Management Library (NVML) interface. Power readings

were sampled at 10 Hz. The K80 also uses a mechanism called AutoBoost to dynamically

vary clock frequencies to fill available power headroom; we disable this feature for more

consistent data collection.

4.3.1.2 NVIDIA Jetson TK1

We also measured sorting performance on an NVIDIA Jetson TK1; the Jetson is low

power and lightweight, consisting of a single GPU streaming multiprocessor (Kepler gen-

53

eration) with 192 cores, and four-plus-one ARM cores, where the fifth ARM core is used

as a master processor. It has a unified DRAM of 2 GB, which is shared between CPUs

and GPUs, and separate cache structures for CPU and GPU. The software installation

uses CUDA 6.5, with version 6.5.35 of the nvcc compiler. The power and energy reported

for Jetson are physical measurements using the Yokogawa WT310 digital multimeter. We

measure the voltage drop across a known precision resistance in series with the device under

test (DUT). With a known resistance and measured voltage on that resistance, the current

can be obtained with the equation I = V/R. Here, the resistance is 0.020 Ohms, with a

1% variation. To determine the power, we use the equation P = IV , where I is the value

calculated above, and V is 12.19V. The Jetson has 14 core clock frequencies ranging from

72-852MHz.

4.3.2 Input Data

As the performance of sort is dependent on its input data, we use a variety of data types,

distributions, and sizes in our experiments. We consider two data types: integer (32-bit)

and long integer (64-bit). Input sequence sizes range from 5K up to 25M keys. Finally, we

use three different input distributions in our experiments: uniform, Gaussian, and zipf.

In total, we generate 54 and 66 sequences for the training and test datasets, respectively,

and ensure that there are no overlapping points between the two sets.

4.4 Experimental Results
We first analyze the effects of frequency adjustments on variant performance and ener-

gy/power efficiency. Figure 4.1 shows the results of this experiment for a fixed test input

sequence of 10 million 64-bit (long) integers with uniform distribution. Here, the x-axis

represents supported core frequencies on the Jetson TK1 and the y-axis shows throughput

(left subfigure), energy-efficiency (middle subfigure), or maximum power draw (right sub-

figure). We notice that throughput and maximum power draw increase for both variants as

frequencies go up. Energy efficiency tends to go up until 396 MHz and then slightly decreases

at higher frequencies. From our experiments, we noticed that the shape of variant curves

changed substantially with input characteristics for both the training and test sets. Further,

for a given metric, the best variant for an input is often different for different frequencies,

as seen in Figure 4.1.

Next we look at how frequency selection is affected by the choice of optimization ob-

jective. We evaluate this by exhaustively searching for the best frequency corresponding to

each input in our test dataset. Figure 4.2 shows the distribution of frequency selections for

54

72 10
8

18
0

25
2

32
4

39
6

46
8

54
0

61
2

64
8

68
4

70
8

75
6

80
4

85
20

50

100

150

200

250
Th

ro
ug

hp
ut

 (M
K

ey
s/

se
c)

72 10
8

18
0

25
2

32
4

39
6

46
8

54
0

61
2

64
8

68
4

70
8

75
6

80
4

85
20.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

En
er

gy
 E

ff
ic

ie
nc

y
(M

K
ey

s/
J) Merge Radix

72 10
8

18
0

25
2

32
4

39
6

46
8

54
0

61
2

64
8

68
4

70
8

75
6

80
4

85
20

1
2
3
4
5
6
7
8
9

M
ax

 P
ow

er
 (W

)

Frequency (MHz)

Figure 4.1: Variation in throughput (keys sorted per second), energy efficiency (keys sorted
per Joule), and maximum power draw of code variants as frequency increases. Results are
for an input sequence of 10M elements, long datatype and uniform distribution on the Jetson
TK1.

72 10
8

18
0

25
2

32
4

39
6

46
8

54
0

61
2

64
8

68
4

70
8

75
6

80
4

85
2

0
10
20
30
40
50
60
70

%
 T

es
t I

np
ut

s

Jetson TK1

T/E T/E2 T2 /E T/P T/P2 T2 /P

56
2

57
5

58
8

60
1

61
4

62
7

64
0

65
3

66
6

67
9

69
2

70
5

71
9

73
2

74
5

75
8

77
1

78
4

79
7

81
0

82
3

83
6

84
9

86
2

87
5

Frequency (MHz)

0
10
20
30
40
50
60
70

%
 T

es
t I

np
ut

s

Tesla K80

Figure 4.2: Distribution of frequencies selected via exhaustive search on the Jetson TK1
(top) and Tesla K80 (bottom) for various optimization objectives.

the six optimization objectives described in Section 4.2 on the Jetson TK1 (top) and Tesla

K80 (bottom). Here, the x-axis represents frequency and the y-axis is the percentage of test

inputs for which a given frequency is selected. Each bar represents a different optimization

objective. We notice that frequency selections are relatively more spread out on the Jetson

TK1. It is also interesting to note that 13 of the 25 frequencies are never selected by any

optimization objective on the Tesla K80. On both architectures, the highest frequency is

preferred for a number of inputs when throughput optimization is given importance (T 2 in

55

the numerator), as expected. Further, we notice that T
P 2 prefers lower frequencies while T

E2

prefers mid to higher frequencies. This indicates that lower frequencies consume less power

and also that optimizing for energy efficiency does not automatically optimize for maximum

power draw and vice versa.

Finally, Figures 4.3 and 4.4 show the prediction performance of the various 〈variant,

frequency〉 selection models on a subset of our test dataset for both architectures. The

subfigures report throughput (top), energy efficiency (middle), or maximum power draw

(bottom) for the selected 〈variant, frequency〉 pair for a given input size on the x-axis. We

also include numbers for radix and merge sort running at the highest supported frequencies

(852 MHz for Jetson TK1 and 875 MHz for Tesla K80) as reference points. For better

readability, we focus on 32-bit integer (int) type and uniform distribution in these figures;

additionally, all values are normalized with respect to radix sort at the highest frequency

for easier comparison across subfigures. The average throughput, energy efficiency, and

maximum power draw (across the full test set) with respect to radix and merge sort is also

presented in Table 4.1. From the figures and table, we notice that the power-optimizing

models (TP and T
P 2) provide lower maximum power draw (especially for larger input sizes);

on average, from Table 4.1, we notice that the savings in power with respect to any one

variant is greater than the corresponding loss in throughput for these models. This can be

beneficial in datacenters, for example, which place a high importance on power reduction.

The remaining models demonstrate improved energy efficiency with respect to the reference

variants while ensuring on-par or better throughput, as shown in Table 4.1. This indicates

that running variants at the highest supported frequency may not always yield the best

energy efficiency. Overall, we demonstrate that input-adaptive 〈variant, frequency〉 selection

models can provide improved energy and power efficiency with less than a proportional drop

in throughput.

4.5 Summary
In this work, we have demonstrated how Nitro can be straightforwardly extended to

support multiobjective tuning and combined 〈variant, frequency〉 selection. We have also

presented the first approach to systematically reducing the energy and power requirements

for node-level sorting on two distinct GPU architectures. Specifically, we demonstrated

56

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
or

m
. T

hr
ou

gh
pu

t

Radix Merge T/E T/E2 T2 /E T/P T/P2 T2 /P

0

1

2

3

4

N
or

m
. E

ne
rg

y
Ef

fic
ie

nc
y

5K 10
K

25
K

50
K

10
0K

25
0K

50
0K 1M 5M 10

M
25

M
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. M

ax
 P

ow
er

Figure 4.3: Throughput (top), energy efficiency (middle), and maximum power (bottom)
on the Jetson TK1 for radix and merge sort, and for variants selected for each optimization
objective. Values are normalized with respect to radix sort. Inputs are of type 〈int,
uniform〉.

57

0
1
2
3
4
5
6

N
or

m
. T

hr
ou

gh
pu

t

Radix Merge T/E T/E2 T2 /E T/P T/P2 T2 /P

0
1
2
3
4
5

N
or

m
. E

ne
rg

y
Ef

fic
ie

nc
y

5K 10
K

25
K

50
K

10
0K

25
0K

50
0K 1M 5M 10

M
25

M
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. M

ax
 P

ow
er

Figure 4.4: Throughput (top), energy efficiency (middle), and maximum power (bottom)
on the Tesla K80 for radix and merge sort, and for variants selected for each optimization
objective. Values are normalized with respect to radix sort. Inputs are of type 〈int,
uniform〉.

58

Table 4.1: Throughput (T), energy efficiency (E) and maximum power draw (P) for the
variants and frequencies selected by the constructed models with respect to fixed radix and
merge sort (at highest frequencies). Values are averaged over all test inputs.

Jetson TK1
T/E T/E2 T 2/E T/P T/P 2 T 2/P

T E P T E P T E P T E P T E P T E P
Radix 2.16 2.37 0.96 2.10 2.33 0.93 2.17 2.36 0.97 1.99 2.38 0.83 1.53 2.35 0.65 2.17 2.36 0.97
Merge 1.01 1.04 0.98 0.99 1.04 0.95 1.02 1.04 0.99 0.91 1.07 0.85 0.70 1.05 0.66 1.02 1.04 0.99

Tesla K80
T/E T/E2 T 2/E T/P T/P 2 T 2/P

T E P T E P T E P T E P T E P T E P
Radix 3.68 3.59 1.00 3.61 3.64 0.95 3.68 3.57 1.01 3.59 3.66 0.93 3.19 3.52 0.83 3.67 3.60 0.99
Merge 1.03 1.08 0.96 1.01 1.11 0.91 1.04 1.07 0.98 0.99 1.12 0.89 0.87 1.07 0.80 1.03 1.09 0.95

59

improvements in energy and power efficiency with less than proportional loss in sorting

throughput. The techniques and algorithms presented in this chapter are easily translatable

to a range of data-intensive applications and we expect that this work will serve as a guideline

for the development of energy and power-efficient algorithms for a wider array of problems

in the near future.

CHAPTER 5

A TUNABLE PROGRAMMING SYSTEM

So far, this dissertation has focused on Nitro, which targets expert programmers. In this

chapter, we introduce a new programming system, Surge, that aims to simplify adaptive

programming for application developers and nonexpert programmers. Surge supports de-

coupling the high-level specification of computations from their implementation details using

first-class constructs. This separation enables it to easily generate a search space of multiple

low-level, architecture-specific implementations from the same specification. Expert users

or autotuners are then able to navigate this search space to find the best implementation

for a given execution context.

Surge consists of a programming interface, implemented as a C++ library, and separate

code generation and autotuning subsystems. The programming interface is based on nested

data parallelism, which is a generalization of flat data-parallelism; in nested data parallelism,

subcomputations of a data-parallel computation may themselves be data-parallel [46]. It

is a powerful abstraction for expressing a variety of parallel computations; further, the

algorithmic hierarchy in nested data-parallelism maps naturally to modern processors, many

of which have hierarchically organized execution and storage resources (such as GPUs).

The separation between nested data-parallel specification and implementation is achieved

using two constructs in the programming interface: schedules and policies. These represent

different levels of abstraction with respect to code generation: schedules provide semantic

constraints on the implementation of data-parallel operators, independent of hardware-

specific details, while policies encapsulate a set of optimization parameters that govern

low-level code generation on various hardware platforms. This two-level design makes

targeting new platforms easier, and provides a systematic way of automatically generating

a search space of valid implementations, which we then navigate using an autotuner. The

resulting system is easy to use, but still provides on par or better performance than manually

optimized implementations for a variety of computations.

61

5.1 Programming Interface
Surge exposes a nested data-parallel programming interface, implemented as a C++

library. Programs written using this interface can be compiled to platform-specific code

using a standard C++ compiler. Table 5.1 lists the currently supported data-parallel

operators, and Listing 5.1 shows an example of how they may be used to express sparse

matrix-vector multiplication (SpMV). A basic sequence type, denoting a view over contigu-

ous one-dimensional data, is also provided. More complex types of sequences can be built

up using operators such as nest, as described in Table 5.1. In Listing 5.1, for example,

s_matrix and s_indices are nested sequences (represented internally using the CSR matrix

format) constructed from the flat one-dimensional sequences nonzeros and column_indices,

respectively, and the same row offset sequence row_offsets; each element of s_matrix and

s_indices thus represents a single row of nonzeros and corresponding column indices of the

original matrix.

For each computation in the program, Surge builds an expression sequence to capture

the nesting structure of its data-parallel operators. Each element of an expression sequence

E is a single data-parallel operator, and given two elements e and f in E, f follows e in the

sequence (represented as e . f) only if the operator corresponding to f is nested within that

of e in the computation. In the SpMV example (Listing 5.1), the outermost map (line 6)

iterates over matrix rows, and the reduce operator on line 14 operates on these rows and is

nested within the map. The corresponding expression sequence is therefore map.reduce. Note

that the gather and map on lines 10 and 12, respectively, are not part of the nesting structure;

instead they are arguments to reduce, and are fused into it as explained in Section 5.3.

An expression sequence is an abstract entity and can be realized in hardware in multiple

ways. For example, on CUDA, two implementations of the SpMV expression sequence can

be obtained by either assigning each iteration of the outermost map to a thread, or to a

logical CUDA warp (power-of-2 contiguous group of threads that are at most the physical

warp size); the former corresponds to the CSR-Scalar implementation and the latter to

CSR-Vector, as described in Bell et al. [47]. To bind an expression sequence to a concrete

hardware implementation, Surge introduces two new constructs in the interface: schedules

and policies. A schedule, when associated with a data-parallel operator, enforces a semantic

constraint on the implementation of that operator; these constraints can then be system-

atically relaxed to obtain platform-independent implementation strategies. Policies, on the

other hand, provide fine-grained control over low-level, platform-specific implementation

details by encapsulating the parameters that drive code generation. By exposing schedules

62

Table 5.1: Current data-parallel operators in Surge. Parameters in square brackets are
optional.

Operator Description
map(f, s1,...,sn) Produces sequence (f(s1[0], ..., sn[0]), f(s1[1],

..., sn[1]), ...)
reduce(⊕, s, p) Produces the result (p ⊕ s[0] ⊕ s[1] ⊕ ...) for oper-

ator ⊕
reduce_by_key(⊕, s, k, p) Performs a segmented reduction of sequence s with key

sequence k and prefix p
scan(f, s, p) Produces sequence y s.t. y[0] = p and y[i] =

f(y[i-1],s[i-1]) for operator f
gather(s, idx) Produces sequence y s.t. y[i] = s[idx[i]]

scatter(s, idx, d) Updates sequence d s.t. d[idx[i]] = s[i]

range(s, e, [stride]) Produces sequence with values ranging from s to e with
stride stride

replicate(v, len) Synthesizes sequence s of length len s.t. s[i] = v for all
i

zip(s1,...,sn) Produces sequence x s.t. x[0]=〈s1[0],...,sn[0]〉,
x[1]=〈s1[1],...,sn[1]〉, ...

split(s, l) Produces nested sequence x from s s.t. each sub-sequence
of x is a tile of s of size l

join(s1,...,sn) Produces sequence (〈x1,..., xn〉i) s.t. x1 ∈ s1, x2 ∈
s2,... & i ∈ [0,

∏n
i=1 len(si))

striding(s, stride) Produces strided sequence from s of stride stride

reverse(s) Produces the reversed sequence of s
nest(s, i) Produces a nested sequence from s, with subsequence

offsets i

1 // Create nested sequences s_matrix and s_indices

2 auto s_matrix = nest(nonzeros, row_offsets);

3 auto s_indices = nest(column_indices, row_offsets);

4 auto spmv =

5 // Apply dot product across all rows of matrix

6 map([=] (S row, I indices) {

7 auto mul = [](double x, double y) {return x*y;};

8 auto plus = [](double x, double y) {return x+y;};

9 // Gather elements from vector x

10 auto z = gather(x, indices);

11 // Element-wise multiplication of x with row

12 auto vector_mul = map(mul, row, z);

13 // Sum up elements to obtain dot product

14 return reduce(plus, vector_mul);

15 },

16 s_matrix, s_indices);

17 // Realize SpMV computation

18 execute(spmv, s_result);

Listing 5.1: Surge code for Sparse Matrix-Vector Multiplication (SpMV). S and I are
defined as decltype(s_matrix[0]) and decltype(s_indices[0]).

63

and policies in the programming interface, as opposed to embedding them deep in the

code generation infrastructure, both autotuners and expert programmers are able to easily

experiment with multiple implementations for a computation. We describe schedules and

policies in more detail in Section 5.2.

For performance-portable code generation, decoupling computations from their imple-

mentations alone is not enough: it is equally important to be able to reason about implemen-

tation strategies for computations in a purely platform-independent manner; targeting a new

platform then reduces to the problem of finding ways to customize these strategies for that

platform. Surge achieves this by keeping the concepts of schedule and policy separate. In

contrast, a system that generates platform-specific implementations directly from high-level

specifications (regardless of whether they are decoupled or not) must reimplement its entire

code generation infrastructure for each new platform.

Invoking the execute function initiates the process of binding the expression sequence to

a concrete implementation. It has the following form:
execute(expr, [destination, platform, schedule, policy])

Here, expr is the nested data-parallel computation, and the optional destination argument

specifies where to copy the results of the computation. The platform argument is used

to specify the target hardware platform. Surge currently supports two platforms: GPUs

and x86 CPUs through CUDA C++ and OpenMP, respectively. If this argument is left

unspecified, it defaults to CUDA C++. Schedules and policies may be specified through the

schedule and policy parameters, respectively; in this work they are inferred automatically

via autotuning (as described in Section 5.2). The values of the parameters platform,

schedule, and policy determine a unique implementation for the computation in expr.

Once specified, expr is automatically compiled to either CUDA C++ or OpenMP code

using static metaprogramming (described in Section 5.3) and a standard C++ compiler.

5.2 Code Generation and Autotuning
The Surge code generator analyzes nested data-parallel computations in the program and,

for each one, systematically enumerates the set of semantically valid schedules and policies.

The code generator is implemented as a set of Python modules. Figure 5.1 provides an

overview of the code generation process.

5.2.1 Computation Analysis

The job of the analyzer is to extract the expression sequence and platform information

for each computation in the program. We avoid using a full-fledged C++ parser for this, and

64

ANALYZER	

Surge Computation

Expression	
 Tree	
 Pla/orm	

SCHEDULE	
 GENERATOR	

POLICY	
 GENERATOR	

Source Training Data Schedules

Source Training Data Policies

Source Training Data Implementations

Figure 5.1: Overview of the Surge code generator.

instead rely on a lightweight introspection mechanism. The analyzer recompiles the input

program with the macro INTROSPECTION_MODE defined; this instructs Surge to pretty-print the

expression sequence and platform information of the computation instead of evaluating it.

The resulting program is run and its output is parsed by the analyzer. Since expression

sequence elements are encoded as templated types (as described in Section 5.3), static

metaprogramming is used to recursively traverse the expression sequence and print out

its information.

5.2.2 Schedule Enumeration

Schedules are defined in terms of execution resources, which are platform-specific units

capable of carrying out a data-parallel operation. Examples of execution resources include

threads, CUDA warps, OpenMP thread-pools, etc. Surge currently supports three schedules:

independent, cooperative, and sequential (Table 5.2). Schedules are nested to correspond

with the nesting structure of the associated expression sequence. For the SpMV code, an

example valid schedule is independent.cooperative: the outermost map can process its ele-

ments independently, whereas the inner reduce (vector dot product) requires a cooperation

stage among threads if implemented in parallel.

Schedule enumeration refers to the process of discovering the set of valid schedules for a

given expression sequence and platform. It consists of two phases: (1) schedule construction

and rewriting, and (2) platform-specific pruning. Before describing schedule enumeration,

we first introduce the schedule rewrite rules, which make it possible to transform one schedule

65

Table 5.2: List of Surge schedules.

Schedule Description
independent Permits the use of multiple execution resources working in parallel
cooperative Permits multiple resources, but they may additionally coordinate with each

other
sequential Permits the use of a single thread

to another in a well-defined manner:
independent → sequential

cooperative → sequential

We define the strength binary relation over the set of schedules as follows: A schedule s1 is

said to be stronger than schedule s2 iff. s2 can be obtained from s1 by following the rewrite

rules in Surge. Operators implemented using a schedule s can always be implemented using

any schedule weaker than s. For example, a map operator implemented using the independent

schedule can always also be implemented using the weaker sequential schedule. On nested

schedules, rewrite rules are applied one at a time on individual elements.

For a given schedule s and the set of valid Surge rewrite rules RR, the set of weaker

schedules w(s) obtained by following rewrite rules is given by

w(s) = {x : (s→ x) ∈ RR+}

where RR+ denotes the transitive closure of RR.

5.2.2.1 Schedule Construction and Rewriting

The first step of schedule enumeration is inferring the strongest nested schedule for the

given expression sequence - this is the schedule construction phase. Elements of the input

expression sequence are traversed in order, and a schedule lookup table (shown in Table 5.3)

is consulted to obtain the corresponding element in the strongest schedule’s sequence. The

strongest obtained schedule, say s, is then rewritten to obtain w(s), the set of all its weaker

schedules. Figure 5.2 depicts schedule construction and rewriting for the SpMV example

from Listing 5.1, and Figure 5.3 visualizes how the generated schedules may be implemented

on the CUDA platform.

5.2.2.2 Platform-specific Rewriting

While generated schedules are guaranteed to be semantically valid, they may not always

be directly implementable on the given platform. For example, since CUDA only supports

66

Table 5.3: Schedule lookup table for Surge operators.

Operator(s) Strongest Schedule
map, gather, scatter, range,

replicate, zip, join, striding,

cyclic, reverse

independent

split, nest independent.independent

reduce, reduce_by_key, scan cooperative

independentucooperative	

mapureduce	

independentusequential	sequentialucooperative	

sequentialusequential	

Schedule
Construction

Rewrite Rewrite

Rewrite Rewrite

Figure 5.2: SpMV schedule construction and rewriting.

independentusequential	 sequentialucooperative	

thread0

sequentialusequential	

thread0

thread1

thread2

grid0

grid1

grid2

independentucooperative	

block0/warp0

block1/warp1

block2/warp2

Figure 5.3: How various SpMV schedules may be implemented in CUDA. In this example,
the input matrix (gray boxes) has 12 nonzeros (blue boxes) and 3 rows.

67

two levels of parallelism on a single GPU (at the thread block or warp level and at the thread

level), any schedule after nesting level 2 must be sequential. Surge thus defines a set of

schedule constraints for each platform, all of which must be satisfied by each generated sched-

ule. If a constraint failure occurs for schedule s, it is transformed to a new schedule s′ using

rewrite rules such that s′ satisfies all constraints. Note that such a transformation always

exists: since schedules of nesting depth n form a bounded lattice under the strength rela-

tion, with the weakest element being sequential1.sequential2.....sequentialn, a nested

operator is always implementable on one thread as a set of nested sequential loops.

5.2.3 Policy Enumeration

A policy for an expression sequence E consists of a set of global and local parameters;

the former affect the implementation of the entire computation, while the latter that of the

associated element of E. An example of a global parameter is warp_size in CUDA, which

specifies the number of threads in a logical CUDA warp, while that of a local parameter

is omp_schedule, which specifies the OpenMP loop schedule to use. Table 5.4 lists the

parameters currently supported by Surge.

As shown in Figure 5.1, the final stage of the code generation process is policy enumer-

ation. Let S be the set of valid schedules produced for expression sequence E and platform

B. The policy enumerator, for each s ∈ S, generates a set of platform-specific optimization

parameter values that dictates how the tuple 〈E,B, s〉 is implemented in hardware. We

now describe the two phases of policy enumeration: optimization parameter inference, and

search space generation.

Table 5.4: List of tunable parameters.

Parameter(s) Type Platform
block_size_x, block_size_y,

logical_warp_size

Global CUDA

grain_size, block_reduce_algo,

block_scan_algo,

block_scan_grain_size

Local CUDA

num_threads, enable_nesting Global OpenMP
omp_schedule, chunk_size Local OpenMP
execution_resource, enable_unroll Local CUDA/OpenMP

68

5.2.3.1 Optimization Parameter Inference.

The set of valid optimization parameters T is given by:

T =
⋃
s∈S

(G(E,B,s) ∪ Get-Parameters(E,B, s))

where G is the set of global parameters, and Get-Parameters (shown in Algorithm 3) is a

function that returns the set of valid local parameters for each 〈E,B, s〉 tuple. The inferred

parameters for the schedules in the SpMV example (see Figure 5.2) are shown in Table 5.5.

5.2.3.2 Search Space Generation

Each parameter t ∈ T can take on a set of values. If r is a function that takes a parameter

as input and outputs the list of its valid values, then the search space is
∏
t∈T r(t), where

∏
denotes a Cartesian product. However, since not all points in this space may be valid on the

given platform, search space generation is followed by a pruning phase that discards points

that violate platform-specific constraints. For example, while the maximum dimension size

of a CUDA thread block along the x and y axes is 1024 each, the total number of threads

per block (product of x and y axis dimensions) is also restricted to 1024 on current GPUs

such as the NVIDIA Tesla K20c.

5.2.4 Autotuning

The code generation approach from the previous section produces a search space of

implementations (code variants) for each computation. To automate the selection of which

variant is most appropriate for a given execution context, we rely on Nitro for autotuning.

The Surge framework and its interaction with Nitro are depicted in Figure 5.4. Since nested

data-parallelism specifically operates on multidimensional (nested) data, having the ability

to adapt to input data characteristics is valuable. Surge infers three features automatically

Algorithm 3 Parameter Inference
1: function Get-Parameters(E, B, s)
2: #E: Expression sequence of form O1.O2.....On.φ
3: #s: Schedule sequence of form s1.s2.....sn.φ
4: #B: Platform
5: if E = φ then return ()
6: else
7: t← parameter-set[O1, s1, B]
8: E’ ← O2.O3.....On.φ
9: s’ ← s2.s3.....sn.φ

10: return t ∪Get-Parameters(E’, B, s’)

69

Table 5.5: Inferred parameters for each SpMV schedule. The subscripts denote nesting
depths.

Schedule Inferred Parameters
(CUDA)

Inferred Parameters
(OpenMP)

independent.cooperative block_size_x,

block_size_y,

logical_warp_size,

grain_size1,

block_reduce_algo2

num_threads,

enable_nesting,

omp_schedule1,

chunk_size1,

omp_schedule2, chunk_size2
independent.sequential block_size_x,

block_size_y,

logical_warp_size,

grain_size1,

enable_unroll2

num_threads,

enable_nesting,

omp_schedule1,

chunk_size1,

enable_unroll2
sequential.cooperative block_size_x,

block_size_y,

logical_warp_size,

block_reduce_algo2

num_threads,

enable_nesting,

omp_schedule2,

chunk_size2,

enable_unroll1
sequential.sequential block_size_x,

block_size_y,

logical_warp_size,

enable_unroll1,
enable_unroll2

enable_unroll1,
num_threads,

enable_nesting,

enable_unroll2

70

AUTOTUNER	
 Model CODE	
 GENERATOR	
 Source Training Data Implementations

Training Inputs

Deployment Phase (Online)
Tuning Phase (Offline)

Input Tuned Implementation

Model

Surge Program

Operator Description
execute(expr, dest, p, [s, tp]) Evaluates expr on hardware platform p and puts results in dest
map(f, s1,..., sn) Produces sequence (f(s1[0], ..., sn[0]), f(s1[1], ..., sn[1]), ...)
reduce(�, s, [p]) Produces a scalar (p � s[0] � s[1] � ...) for a commutative and associative operator �
scan(f, s, [p]) Produces sequence y s.t. y[0] = p and y[i] = f(y[i-1],s[i-1]) for an associative operator

f
gather(s, idx) Produces sequence y s.t. y[i] = s[idx[i]]
range(s, e, stride) Produces sequence with values ranging from s to e with stride stride
replicate(v, len) Synthesizes sequence s of length len s.t. s[i] = v for all i
zip(s1,..., sn) Produces sequence x s.t. x[0] = <s1[0],..., sn[0]>, x[1] = <s1[1],..., sn[1]>,

...
split(s, len) Produces nested sequence x from s s.t. each sub-sequence of x is a tile of s of size len
join(s1,..., sn) Produces sequence X = (<x1,..., xn>i) s.t. x1 2 s1, x2 2 s2, ... & i 2

[0,
Qn

i=1 len(si))
striding(s, stride) Produces strided sequence from s of stride stride
reverse(s) Produces the reversed sequence of s
nest(s, i) Produces nested sequence in CSR format with element sequence s and column indices sequence

i
transpose(s) Produces nested sequence that is the transpose of input nested sequence s

Table 1. List of Surge data-parallel operators. Parameters in square brackets are optional.

1 auto spmv =
2 // Apply dot product across all rows of matrix
3 map([=] __device__ (S row, I indices) {
4 // Gather elements from vector x
5 auto z = gather(x, indices);
6
7 auto mul = [](T x, T y) { return x*y; };
8 auto plus = [](T x, T y) { return x+y; };
9

10 // Element-wise multiplication of x with row
11 auto vector_mul = map(mul, row, z);
12
13 // Sum up elements to obtain dot product
14 return reduce(plus, vector_mul);
15 },
16 s_matrix, s_indices);
17
18 // Realize SpMV computation on CUDA platform
19 execute(spmv, s_result, platform::cuda{});
20
21 blah

Listing 1. Surge code for SpMV. The call to execute realizes the
computation and places the result into the s_result sequence.

3. Generating Platform-Specific Code
The Surge code generator analyzes the computations in a program
and automatically generates valid platform-specific implementa-
tions for them. Figure 2 provides an overview of the process.

3.1 Parameterized Code Generation
Surge decouples high-level specifications from lower-level platform-
specific code using two related concepts: schedules, and policies.
Before describing them, we first formalize a notation for represent-
ing computations. We denote each nested data-parallel computation
as an expression tree E. Each node of E represents a single data-
parallel operator, and given two nodes e and f in E, e is said to be
the parent of f iff. f is nested within e. We denote parenthood us-
ing the . operator. Thus, map.reduce represents a valid expression
tree.

An expression tree is an abstract representation of a computa-
tion and can be implemented in hardware in a number of ways.

AUTOTUNER(Model CODE(GENERATOR(Source Training Data Implementations

Training Inputs

Surge Program

Surge: An Autotuned Nested Data-Parallel
Programming Model for Performance Portability

Blind for review

Abstract
This is the text of the abstract.

Keywords nested data parallelism; performance portability; code
generation; autotuning; input-adaptive; GPU;

1. Introduction
2. Programming Model Overview
Nested data-parallelism has been proven to be a powerful abstrac-
tion for expressing a variety of parallel computations []. However,
most existing NDP programming models map computations to low-
level platform-specific code using fixed strategies (such as flatten-
ing) ??. These are often embedded deep in the model’s compiler
and are difficult to change by users, restricting the model’s ability
to adapt to changing hardware architectures and execution contexts.

Surge is a nested data-parallel programming framework that has
been designed to overcome this limitation. Similar to existing NDP
models, it provides a standard set of nestable data-parallel operators
for expressing computations at a high level. However, Surge com-
putations are decoupled from their implementations through the use
of two first-class language constructs: schedules, and tuning poli-
cies. This is one of the unique features of Surge and it allows users
and/or autotuners to conveniently generate and tune multiple low-
level implementations of the same Surge computation.

Figure ?? provides a high-level overview of the framework. The
Surge parameterized code generator takes in a computation (ex-
pressed using Surge operators) and automatically generates multi-
ple valid implementations, or code variants from it. This is accom-
plished by systematically varying the schedules and tuning poli-
cies associated with the computation. Which code variant to use
depends on several factors including characteristics of the under-
lying architecture, and even the input dataset provided to the com-
putation. To enable intelligent selection of code variants, we have
integrated the Nitro autotuning framework [] into Surge. As shown
in the figure, Nitro generates a machine learning-based model that
selects the optimal code variant at run-time, based on both archi-
tecture and input data characteristics.

NDP Programming Interface Surge provides a set of data-
parallel operators which may be nested within each other. Ta-

[Copyright notice will appear here once ’preprint’ option is removed.]

1 auto spmv =
2 // Apply dot product across all rows of matrix
3 map([=] __device__ (S row, I indices) {
4 // Gather elements from vector x
5 auto z = gather(x, indices);
6
7 auto mul = [](T x, T y) { return x*y; };
8 auto plus = [](T x, T y) { return x+y; };
9

10 // Element-wise multiplication of x with row
11 auto vector_mul = map(mul, row, z);
12
13 // Sum up elements to obtain dot product
14 return reduce(plus, vector_mul);
15 },
16 s_matrix, s_indices);
17
18 // Realize SpMV computation on CUDA platform
19 eval(spmv, s_result, platform::cuda{});
20
21 blah

Listing 1. Surge code for SpMV. The call to eval realizes the
computation and places the result into the s_result sequence.

ble 2 lists these operators and Listing 1 shows an example of how
they may be used to express sparse matrix-vector multiplication
(SpMV). A basic sequence type, denoting a view over contigu-
ous one-dimensional data, is provided. More complex types of
sequences can be built up using operators such as nest and split.
In Listing 1, for example, s_matrix and s_indices are nested
sequences (represented using the CSR matrix format) constructed
from basic sequence types using the nest operator.

Surge uses lazy operator evaluation to defer the realization
of computations until an appropriate implementation context is
available. This works as follows: each time an operator is called,
a node is created in the expression tree for that computation. Note
that operators are not evaluated at the point of call: they are simply
recorded in the expression tree. Once the full expression tree of a
computation is available, it may then be provided as an argument
to the special eval function for realization on the given hardware
platform.

The eval function acts as the entry-point to the Surge code
generator and autotuner. It has the following form:

eval(expr, destination, platform, schedule, policy)

Here, expr denotes the expression tree, destination specifies
where to copy the results of the computation to, and platform is
used to specify which hardware platform to generate code for. The
schedule and policy parameters are optional and are used to drive
code generation. It is possible to manually specify their values, but
by default, they are filled in by the autotuner.

Code Generation and Autotuning

1 2015/8/25

Deployment Phase (Online)
Tuning Phase (Offline)

Input Tuned Implementation

Model

Surge Program

Surge: An Autotuned Nested Data-Parallel
Programming Model for Performance Portability

Blind for review

Abstract
This is the text of the abstract.

Keywords nested data parallelism; performance portability; code
generation; autotuning; input-adaptive; GPU;

1. Introduction
2. Programming Model Overview
Nested data-parallelism has been proven to be a powerful abstrac-
tion for expressing a variety of parallel computations []. However,
most existing NDP programming models map computations to low-
level platform-specific code using fixed strategies (such as flatten-
ing) ??. These are often embedded deep in the model’s compiler
and are difficult to change by users, restricting the model’s ability
to adapt to changing hardware architectures and execution contexts.

Surge is a nested data-parallel programming framework that has
been designed to overcome this limitation. Similar to existing NDP
models, it provides a standard set of nestable data-parallel operators
for expressing computations at a high level. However, Surge com-
putations are decoupled from their implementations through the use
of two first-class language constructs: schedules, and tuning poli-
cies. This is one of the unique features of Surge and it allows users
and/or autotuners to conveniently generate and tune multiple low-
level implementations of the same Surge computation.

Figure ?? provides a high-level overview of the framework. The
Surge parameterized code generator takes in a computation (ex-
pressed using Surge operators) and automatically generates multi-
ple valid implementations, or code variants from it. This is accom-
plished by systematically varying the schedules and tuning poli-
cies associated with the computation. Which code variant to use
depends on several factors including characteristics of the under-
lying architecture, and even the input dataset provided to the com-
putation. To enable intelligent selection of code variants, we have
integrated the Nitro autotuning framework [] into Surge. As shown
in the figure, Nitro generates a machine learning-based model that
selects the optimal code variant at run-time, based on both archi-
tecture and input data characteristics.

NDP Programming Interface Surge provides a set of data-
parallel operators which may be nested within each other. Ta-

[Copyright notice will appear here once ’preprint’ option is removed.]

1 auto spmv =
2 // Apply dot product across all rows of matrix
3 map([=] __device__ (S row, I indices) {
4 // Gather elements from vector x
5 auto z = gather(x, indices);
6
7 auto mul = [](T x, T y) { return x*y; };
8 auto plus = [](T x, T y) { return x+y; };
9

10 // Element-wise multiplication of x with row
11 auto vector_mul = map(mul, row, z);
12
13 // Sum up elements to obtain dot product
14 return reduce(plus, vector_mul);
15 },
16 s_matrix, s_indices);
17
18 // Realize SpMV computation on CUDA platform
19 eval(spmv, s_result, platform::cuda{});
20
21 blah

Listing 1. Surge code for SpMV. The call to eval realizes the
computation and places the result into the s_result sequence.

ble 2 lists these operators and Listing 1 shows an example of how
they may be used to express sparse matrix-vector multiplication
(SpMV). A basic sequence type, denoting a view over contigu-
ous one-dimensional data, is provided. More complex types of
sequences can be built up using operators such as nest and split.
In Listing 1, for example, s_matrix and s_indices are nested
sequences (represented using the CSR matrix format) constructed
from basic sequence types using the nest operator.

Surge uses lazy operator evaluation to defer the realization
of computations until an appropriate implementation context is
available. This works as follows: each time an operator is called,
a node is created in the expression tree for that computation. Note
that operators are not evaluated at the point of call: they are simply
recorded in the expression tree. Once the full expression tree of a
computation is available, it may then be provided as an argument
to the special eval function for realization on the given hardware
platform.

The eval function acts as the entry-point to the Surge code
generator and autotuner. It has the following form:

eval(expr, destination, platform, schedule, policy)

Here, expr denotes the expression tree, destination specifies
where to copy the results of the computation to, and platform is
used to specify which hardware platform to generate code for. The
schedule and policy parameters are optional and are used to drive
code generation. It is possible to manually specify their values, but
by default, they are filled in by the autotuner.

Code Generation and Autotuning

1 2015/8/25

Figure 1. Surge system overview

ANALYZER(

Surge Computation

Expression*Tree* Pla/orm*

SCHEDULE(GENERATOR(

POLICY(GENERATOR(

Source Training Data Schedules

Source Training Data Policies

Source Training Data Variants

Figure 2. Surge code generator

Given an expression tree E, we may define its set of valid imple-
mentations for a particular platform B as follows:

VB = {vi : vi = cg(E, B, si, pi)}
Here, VB is the set of implementations generated from E for

platform B, and cg is the code generation function that given

2 2015/9/5

Running Program

Figure 5.4: Overview of the Surge framework and its interaction with Nitro.

by analyzing the structure of the first input sequence used by the computation: (1) length

of the input sequence, (2) aspect ratio for uniformly nested sequences, and (3) average row

length for irregularly nested sequences (obtained through the nest operator, for example).

5.3 Translation to Target-Specific Code
The Surge programming interface is a domain-specific embedded language (DSEL) [48]

with C++ as the host. The primary entities in the programming interface, namely op-

erators, schedules, policies, and platforms, are all implemented as types to enable static

metaprogramming. In particular, Surge overloads operators to act as type constructors, as

in the expression template idiom [49], to construct the expression sequence at compile-time.

This enables the hardware realization of operators to be deferred until an appropriate

implementation context (platform, schedule, and policy) is available. As a concrete example,

consider map: it is recorded as the type transformed_sequence<F, S1, S2, ...>, where F is

the function being applied to every element of sequences Si. Since a map’s iterations can

be executed independently, transformed_sequence correspondingly provides the subscript

operator to realize each individual iteration independently. Thus, in Listing 5.1, the spmv

variable on line 4 is a transformed_sequence, and spmv[0] calls the lambda function defined

on line 6 with arguments (s_matrix[0], s_indices[0]); this returns an object of type

reduced_sequence, corresponding to the reduce operator on line 14.

With the expression sequence constructed, a set of nested computation kernels, defined for

each platform, is used to realize computations. Each kernel implements a set of 〈E,B, S, P 〉

tuples, where E is the expression sequence, B is the platform, S is the schedule, and P

is the policy. Representing schedules and policies as separate types enables us to utilize

71

the C++ substitution failure is not an error (SFINAE) idiom and function overloading to

define both generic and highly specialized computation kernels conveniently. For example,

Listing 5.2 shows a simple kernel that realizes any valid operator bound with the independent

schedule on CUDA. In contrast, the type signature of a kernel specialized for the tuple

〈reduce_by_key._, CUDA, cooperative.independent, _〉 is as follows:
template<typename S, typename D, typename policy>
__global__ void nested_kernel(S src, D dest,

cooperative<independent<>>, policy,

mpl::enable_if_t<mpl::sequence_traits::

is_seg_reduced<S>::value>* = 0);

and for the tuple 〈_, CUDA, independent.cooperative, 〈execution_resource=cuda_warp,

· · · 〉〉 is as follows:
template<typename S, typename D, typename policy>
__global__ void nested_kernel(S src, D dest,

independent<cooperative<>>, policy,

mpl::enable_if_t<std::is_same<typename

policy::sub_policy::execution_resource,

res::cuda::warp>::value>* = 0)

5.3.1 Targeting New Architectures

Implementing support for a new architecture involves defining a new platform type, and

corresponding tunable parameters and nested computation kernels. As described above,

the two-layered schedule+policy approach provides a great amount of flexibility while im-

plementing new computation kernels: programmers can start with fairly generic kernels,

and then specialize incrementally. This separation also reduces the effort required to add

automatic code generation support, as every phase of the code generator need not be re-

1 // Implements tuple <_, CUDA, independent, _>

2 template<typename S, typename D, typename policy>

3 __global__ void nested_kernel(S src, D dest,

4 independent<>, policy) {

5 using iteration_type =

6 typename S::template iteration_type<

7 D, platform::cuda, res::cuda::thread,

8 mpl::global_policy_t<policy>,

9 mpl::sub_policy_t<policy, 1>>;

10
11 const int idx = blockIdx.x*blockDim.x+threadIdx.x;

12 const int grid_size = gridDim.x*blockDim.x;

13
14 iteration_type iterator(src, dest);

15 for(int i = idx; i < src.size(); i += grid_size)

16 iterator[i];

17 iterator.finalize();

18 }

Listing 5.2: Sample CUDA nested computation kernel for the independent schedule.

72

implemented; instead, only the platform-specific schedule rewriting and policy enumeration

phases need to be implemented for the new platform, as described in Section 5.2.

5.3.2 Operator Fusion
Deferred realization permits operators to be fused together. Consider the case when an

operator Op is an argument to operator Oc; for example, in Listing 5.1, gather (on line 10)

is an argument to map (line 12), which in turn is an argument to reduce (line 14). If Op can

be realized using independent iterations, then Surge fuses each iteration of Op (producer)

with that of Oc (consumer) and thus eliminates the need for temporary storage required to

realize Op.

5.4 Benchmarks
We express five benchmark applications in Surge and evaluate their performance on

both multicore CPUs and GPUs. To better model a range of real-world applications, the

benchmarks are of varying complexity, and are drawn from diverse domains such as linear

algebra, machine learning, and physical simulation. Table 5.6 lists our benchmarks, together

with the nested operators used, and details about the reference implementations. The

remainder of this section describes each benchmark in detail.

5.4.1 Reduction and Scan
For our first set of benchmarks, we implement parallel reduction and parallel prefix scan

(scan for short) in Surge. Reduction and scan are fundamental parallel computing primitives

that are widely used as building blocks for more complex algorithms [55]. Given a sequence

Table 5.6: List of benchmarks with description, their core computation(s) and details about
reference implementations.

Benchmark Description Core Computa-
tion(s)

Reference Imple-
mentation

Reduction Parallel reduction map.reduce Thrust 1.8.2 [50]
Scan Parallel prefix scan map.scan, map.reduce Thrust 1.8.2 [50]
SpMV Sparse matrix-vector

multiplication
map.reduce GPU: CUSP 0.5.1 [9],

CPU: MKL 11.2 [51]
K-Means K-Means clustering

using LLoyd’s
algorithm [52]

reduce_by_key.map,
map.reduce

Catanzaro et al. [40]

CoMD Co-design molecular
dynamics proxy
application

map.reduce, map ExMatEx CoMD
1.1 [53], [54]

73

of input elements x0, x1, x2, ..., xN , a prefix element p, and a binary operator ⊕, the output

of a reduction is the scalar value x = p⊕ x0 ⊕ x1 ⊕ ...⊕ xN while that of prefix scan is the

sequence y0, y1, y2, ..., yN , where y0 = p and each yi = yi−1 ⊕ xi−1.

In the Surge implementation (Listings 5.3 and 5.4), the input sequence is first split into

evenly sized tiles which are reduced or scanned in parallel to yield a set of partial results

(or partials). These are processed to obtain the final result of the reduction or scan. For

the computation of partials, the in-built reduce and scan operators are instantiated within

a map, yielding a nested data-parallel algorithm.

5.4.2 Sparse Matrix-Vector Multiplication (SpMV)

SpMV is a critical operation that is used in many iterative methods for solving large-scale

linear systems. For this benchmark, we implement the SpMV computation in Surge, as

shown in Listing 5.1. The sparse matrix and column indices (s_matrix and s_indices on

line 16) are represented as nested sequences, which are internally stored in a compressed

sparse row (CSR) analogue. The outermost map (line 6) processes each row of the matrix.

Inside the body of the lambda that processes a single row, the correct elements of the vector

are first gathered (line 10), multiplied on an element-wise basis with the current matrix row

(line 12), and finally summed up to yield the dot product of that row (line 14). Note that

the gather and map on lines 10 and 12 are automatically fused into the reduce on line 14,

eliminating temporaries (see Section 5.3 for a description of operator fusion).

1 auto plus =

2 [](value_t a, value_t b) { return a + b; };

3
4 // Split original flat sequence (s) into C tiles

5 auto s_tiled = split(s, tile_size);

6
7 typedef decltype(s_tiled[0]) row_t;

8 auto row_reduce =

9 [=](row_t row) { return reduce(plus, row); };

10
11 // Compute per-tile reductions

12 execute(map(row_reduce, s_tiled), s_partials);

13
14 // Reduce partials into s_result[0]

15 auto s_partials_tiled = split(s_partials, C);

16 execute(map(row_reduce, s_partials_tiled), s_result);

Listing 5.3: Surge code for parallel reduction.

74

1 auto plus =

2 [](value_t a, value_t b) { return a + b; };

3
4 // Split original flat sequence (s) into C tiles

5 auto s_tiled = split(s, tile_size);

6 typedef decltype(s_tiled[0]) row_t;

7
8 // Compute per-tile reductions

9 execute(

10 map([=](row_t tile) {

11 return reduce(plus, tile);

12 }, s_tiled),

13 s_partial_reductions);

14
15 // Prefix sum over partial reductions

16 auto s_partials_tiled = split(s_partial_reductions, C)

17 execute(

18 map([=](row_t tile) {

19 return scan(plus, tile);

20 }, s_partials_tiled),

21 s_partial_scans);

22
23 // Compute full prefix sum by seeding from reduction

24 execute(

25 map([=](row_t tile, T prefix) {

26 return scan(plus, tile, prefix);

27 }, s_tiled, s_partial_scans[0]),

28 s_result);

Listing 5.4: Surge code for parallel prefix scan.

5.4.3 K-Means Clustering

K-Means clustering is an important algorithm commonly used in fields such as computer

vision and signal processing. The problem is defined as follows: given a set of N data

points in D−dimensional space RD, and an integer k, determine a set of k points in RD,

called centroids, so as to minimize the mean squared distance from each data point to its

nearest centroid. We implement a popular heuristic for k-means clustering called Lloyd’s

algorithm [52]. Additionally, we use the strategy outlined by Catanzaro et al. [40] and

rewrite the distance computation ||x− y||2 as x · x+ y · y− 2 · x · y, where x denotes a point

and y a centroid. This refactorization lifts the x · x computation out of the main k-means

loop and enables the use of vendor-optimized GEMM library calls to efficiently compute

x · y.

Given an initial set of k means, Lloyd’s algorithm proceeds by alternating between two

steps: (1) relabeling: assign each point to the cluster with the nearest centroid, where the

distance between points is the Euclidean distance; and (2) centroid recalculation: calculate

the new cluster centroids as the mean of the values of points in the new clusters. While

the Surge k-means implementation consists of five computations, we focus on the more

75

1 // Use a tiled sequence for centroids and points.

2 auto s_centroids = split(s_centroids_flat, d);

3 auto s_points = split(s_data_flat, d);

4
5 //Bring all labels with the same value together

6 thrust::sort_by_key(s_labels.begin(), s_labels.end(),

7 s_indices.begin());

8
9 auto s_points_x = gather(s_points, s_indices);

10 auto s_prefix = replicate(0, d);

11
12 using point_t = decltype(s_points_x[0]);

13
14 auto plus = [](value_t a, value_t b) { return a + b; };

15
16 execute(

17 reduce_by_key([=] (point_t x, point_t y) {

18 return map(plus, x, y);

19 }, s_points_x, s_labels, s_prefix),

20 s_centroids);

Listing 5.5: Surge code for k-means centroid recalculation.

expensive centroid recalculation step, the code for which is shown in Listing 5.5. Here, the

centroids and data points are stored as tiled sequences (with tile size D) and are obtained

by applying a split on flat 1-D sequences stored in row-major format (s_centroids_flat

and s_points_flat). Each element of s_labels, say s_labels[i], initially contains the label

(index) of the closest centroid for data point i. We sort s_labels to bring all labels of

the same centroid together, and store the corresponding point indices in s_indices (which

initially holds range(0, N − 1)). The sum of the points belonging to each centroid can now

be obtained through a segmented reduction of s_points (permuted through s_indices) with

key s_labels. Since each point is itself in D-dimensional space, we use reduce_by_key.map

(line 17) to accomplish this. A simple scaling step (not shown in the Listing) then divides

the resulting points by their correct counts to obtain the new set of centroids.

5.4.4 Co-design Molecular Dynamics Proxy (CoMD)

CoMD is a molecular dynamics proxy application that is part of the ExMatex project [53].

The workloads seen in the reference CoMD application are representative of those in classical

molecular dynamics applications, which is to identify all pairs of atoms under a radius cutoff,

and compute the force between these pairs. While the reference implementation supports

methods of computing Lennard-Jones (LJ) and Embedded Atom Method (EAM) potentials,

we only consider the EAM potential method in this work.

For this benchmark, we express two algorithms for the EAM potential method for

computing interatom forces in Surge. One computes the forces directly (Listing 5.6), while

76

1 auto s_space = split(s_boxes, tile_size);

2 auto s_count_range = range(0, s_space.size());

3
4 typedef decltype(s_space[0]) tile_t;

5
6 // Compute partial reductions into s_result

7 execute(

8 map([=](tile_t tile) {

9 real_t etot = 0.;

10
11 // Loop over neighboring atoms,

12 // update force and compute energy.

13 ...

14
15 return etot;

16 }, s_space, s_count_range),

17 s_result);

18
19 // Reduce partials

20 real_t etot =

21 thrust::reduce(s_result.begin(), s_result.end());

Listing 5.6: Surge code for CoMD inter-atom force calculation (direct version).

1 auto s_domain = range(0, atoms_list.n);

2
3 // eam_force_functor updates the

4 // given atom’s force, energy and position.

5 eam_force_functor f(sim, atoms_list);

6
7 // In-place execute

8 execute(map(f, s_domain));

Listing 5.7: Surge code for CoMD inter-atom force calculation (redistributed version).

the other performs a domain-specific redistribution of atoms to expose more parallelism

before computing the forces (Listing 5.7). The direct method splits the input atom space

into evenly-sized tiles and computes partial energy values for each tile. The partials are

then reduced to obtain the final energy value. In the redistributed version (Listing 5.7), the

map on line 8 applies the eam_force_functor, which updates a given atom’s force, energy,

and position, to each atom. Note that both algorithms are expressed in a platform-neutral

way and are targetable on both hardware platforms. To enable selection between these two

algorithms, we specify them as algorithmic variants using Nitro. We thus obtain a two-level

selection process where the algorithm is first selected, followed by the implementation of

that algorithm for the target platform.

77

5.5 Evaluation
In this section, we demonstrate performance and productivity results for the five bench-

marks described in Section 5.4. For each benchmark, both CPU and GPU implementations

are automatically generated, and the performance of the best ones for each platform (found

through autotuning) are compared against hand-written reference implementations for that

platform.

5.5.1 Methodology and Hardware Platforms

Our evaluation was run on two hardware platforms: (1) a dual-socket, 32-core Intel

Xeon E5-2698 v3 CPU (Haswell) running at 2.30 Ghz, and (2) an NVIDIA Tesla K20c

GPU (Kepler generation). The NVIDIA CUDA compiler (NVCC) 7.5 was used, with

g++-4.8.2 as the host (CPU) compiler. The -O3 flag was specified. During CPU results

collection, the KMP_AFFINITY environment variable was set to granularity=fine,scatter.

All implementations were run for 100 timing iterations to collect consistent results. Unless

otherwise specified, double precision floating-point numbers were used in our evaluation.

Once the benchmarks were specified, Surge automatically generated valid implementa-

tions for the desired platform, tuned them, and produced the SVM models. Table 5.7 shows

the tuning information for each benchmark, including the features inferred automatically by

Surge (as explained in Section 5.2.4), number of training and testing inputs, and size of the

search space (number of distinct implementations generated by Surge). When Nitro builds

its model in the offline training phase, it automatically finds the best variant corresponding to

each training input using exhaustive search; the maximum number of such unique variants

across all computations in a benchmark is listed in the last two columns of Table 5.7.

We observe that although the initial search space is fairly large, the set of variants for a

computation that perform well on a given platform is relatively small.

5.5.1.1 Training and Testing Inputs

As mentioned in Section 5.2.4, the training inputs for Nitro, due to their domain-specific

nature, must be provided by the programmer. For reduction, scan, k-means, and CoMD, we

generated synthetic inputs for both training and testing; for SpMV, we used sparse matrices

from the UFL Sparse Matrix Collection [56]. To obtain representative training sets, we start

with a large pool of inputs for each benchmark and use Nitro’s active learning heuristic [57]

to automatically prune it down and obtain the final training set. The test sets are mutually

distinct from the training set. The third column of Table 5.7 shows the number of training

and test inputs for each benchmark.

78

Table 5.7: Features used, number of training and test inputs, size of search space, and
number of variants for each benchmark.

Benchmark Inferred Features #Inputs Search Space Size #Variants
#Training #Testing GPU CPU GPU CPU

Reduction #tiles, aspect_ratio GPU:8, CPU:6 8 42 36 4 3
Scan #tiles, aspect_ratio GPU:7, CPU:5 8 90 72 4 3
SpMV #rows, avg_rowlen GPU:10, CPU:6 13 42 36 5 4
K-Means #elements, #tiles, aspect_ratio GPU:5, CPU:7 7 40 12 3 5
CoMD #elements, #tiles, aspect_ratio GPU:7, CPU:7 7 48 60 4 3

5.5.2 Performance Results

Figures 5.5 to 5.7 show performance results for our benchmarks on both hardware

platforms. In each graph, points on the x-axis represent different inputs from the test

set, while the y-axis shows performance in terms of throughput. For each benchmark, we

show the performance achieved by the reference and tuned implementations. Note that

the performance data shown for the tuned implementations include feature evaluation and

SVM model query time. We also include a comparison with the performance achievable if

the best implementation among all the generated ones were found via exhaustive search for

each test input (lines and bars labeled ‘Exhaustive’). The average speedups (over the test

set) achieved by the tuned Surge implementation over reference implementations are listed

in the second and third columns of Table 5.8.

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

25k	 100k	 250k	 500k	 1M	 5M	 10M	 25M	

Bi
lli
on

	It
em

s	R
ed

uc
ed

/s
ec
	

Input	Size	

Reduc=on	Performance	-	CUDA	

Thrust	 Surge	Tuned	
Exhaus0ve	

0	

1	

2	

3	

4	

5	

6	

25k	 100k	 250k	 500k	 1M	 5M	 10M	 25M	

Bi
lli
on

	It
em

s	S
ca
nn

ed
/s
ec
	

Input	Size	

Scan	Performance	-	CUDA	

Thrust	 Surge	Tuned	
Exhaus0ve	

0	

2	

4	

6	

8	

10	

25k	 100k	 250k	 500k	 1M	 5M	 10M	 25M	

Bi
lli
on

	It
em

s	R
ed

uc
ed

/s
ec
	

Input	Size	

Reduc=on	Performance	-	OpenMP	

Thrust	 Surge	Tuned	
Exhaus0ve	

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

25k	 100k	 250k	 500k	 1M	 5M	 10M	 25M	

Bi
lli
on

	It
em

s	S
ca
nn

ed
/s
ec
	

Input	Size	

Scan	Performance	-	OpenMP	

Thrust	 Surge	Tuned	 Exhaus0ve	

0	

5	

10	

15	

20	

ca
nt	

co
ns
ph
	

co
p2
0k
_A
	

ma
c_
ec
on
_fw

d5
00
	

mc
2d
ep
i	

pd
b1
HY
S	
pw
tk	

qc
d5
_4
	

rai
l42
84
	

rm
a1
0	

sci
rcu
it	

sh
ips
ec
1	

we
bb
ase
-1M

	

FP
64
	G
FL
O
P/
s	

Input	Matrix	

SpMV	Performance	-	CUDA	

CUSP	 Surge	Tuned	 Exhaus0ve	

0	
10	
20	
30	
40	
50	
60	
70	

ca
nt	

co
ns
ph
	

co
p2
0k
_A
	

ma
c_
ec
on
_fw

d5
00
	

mc
2d
ep
i	

pd
b1
HY
S	
pw
tk	

qc
d5
_4
	

rai
l42
84
	

rm
a1
0	

sci
rcu
it	

sh
ips
ec
1	

we
bb
ase
-1M

	

FP
64
	G
FL
O
P/
s	

Input	Matrix	

SpMV	Performance	-	OpenMP	

MKL	 Surge	Tuned	 Exhaus0ve	

Figure 5.5: Reduction, Scan and SpMV Performance on CUDA and OpenMP.

79

0	
10	
20	
30	
40	
50	
60	

25k	 100k	 250k	 500k	 1M	 5M	 10M	

M
ill
io
n	
Ite

m
s	C

lu
st
er
ed

/s
ec
	

Input	Size	

K-Means	Performance	-	CUDA	

Reference	 Surge	Tuned	
Exhaus2ve	

0	

2	

4	

6	

8	

10	

25k	 100k	 250k	 500k	 1M	 5M	 10M	

M
ill
io
n	
Ite

m
s	C

lu
st
er
ed

/s
ec
	

Input	Size	

K-Means	Performance	-	OpenMP	

Reference	 Surge	Tuned	
Exhaus2ve	

Figure 5.6: K-Means Performance on CUDA and OpenMP.

0	

5	

10	

15	

20	

10k	 25k	 50k	 100k	 250k	 500k	 1M	

M
ill
io
n	
Fo
rc
e	
Ca

lc
ul
a3

on
s/
s	

Input	Size	

CoMD	Performance	-	CUDA	

Reference	 Surge	Tuned	
Exhaus2ve	

3	
3.2	
3.4	
3.6	
3.8	
4	

4.2	
4.4	

10k	 25k	 50k	 100k	 250k	 500k	 1M	

M
ill
io
n	
Fo
rc
e	
Ca

lc
ul
a3

on
s/
s	

Input	Size	

CoMD	Performance	-	OpenMP	

Reference	 Surge	Tuned	
Exhaus2ve	

Figure 5.7: CoMD Performance on CUDA and OpenMP.

5.5.2.1 Reduction and Scan

Figure 5.5 shows the performance of reduction and scan. The tuned version either

matches or significantly outperforms the reference implementations on both platforms for

all test inputs. The performance is especially good on the GPU for small input sizes, where

a CUDA warp-based reduction or scan is automatically selected.

5.5.2.2 SpMV

Figure 5.5 shows the performance of the Surge SpMV code (shown in Listing 5.1).

We compare against the CUSP CSR Vector and Intel Math Kernel Library (MKL) CSR

implementations on the GPU and CPU respectively. The ability to vary logical warp sizes

proves to be crucial to obtaining good performance on the GPU, as matrices with smaller

average row lengths perform best with smaller logical warp sizes. On matrices with relatively

large average row lengths (for example, rail4284), the preferred execution resource on CUDA

80

Table 5.8: Average speedups over GPU and CPU reference implementations, and source
lines of code (SLOC) required for Surge, and GPU and CPU reference implementations.

Benchmark Speedup SLOC
GPU CPU Surge GPU CPU

Reduction 3.67 1.04 8 88 51
Scan 1.26 2.28 19 96 63
SpMV 1.17 0.93 11 55 unknown

K-Means 1.05 0.98 43 125 71
CoMD 1.01 0.95 71, 78 91 74

seems to be blocks, as opposed to warps. On the CPU, the tuned version performs between

80.5% and 128.8% of highly tuned MKL code.

5.5.2.3 K-Means

For this benchmark, the dimension of each vector is set to 32 and the number of clusters

to 10. The algorithm is run for 100 iterations. The Surge version of K-Means uses a

reduce_by_key.map operator at the core. On CUDA, the number and size (along both the

x- and y-dimensions) of the CUDA blocks turn out to be the most important parameters,

and tuning them enables us to beat the reference implementation for larger input sizes.

5.5.2.4 CoMD

Figure 5.7 shows the performance numbers for CoMD. On the CPU, we see that the direct

approach, which uses map.reduce, works best, while the version that performs redistribution

does well on the GPU. On both platforms, the version selected by Nitro performs on par

with reference implementations.

5.5.2.5 Tuning and Overheads

Comparing the performance of implementations tuned by Surge with that of those found

via exhaustive search, we notice that the automatically constructed SVM models predict

the right implementation for the given test inputs in almost all cases. This imples that the

input features added by Surge are highly effective at predicting good implementations. Also,

since the inferred features can be computed in constant time, and the number of variants

is relatively small for all benchmarks, we observed that the overhead of feature evaluation

and SVM model query was negligible (order of a few microseconds). Since applications may

be drawn from various domains, we do not claim that the inferred features will always be

81

sufficient, or that the feature evaluation and SVM model query times will always be this

low; instead, we believe that the inferred features, and the integration with Nitro in general,

provide a good starting point for tuning the implementations generated by Surge.

5.5.2.6 Summary

Overall, the tuned implementations generated by Surge achieve excellent performance

across the board, and often beat the performance of the reference implementations. On

the GPU, the ability to vary the execution resource, logical warp sizes, and the number

and size of blocks has the most effect on performance. On the CPU, tuning has a less

pronounced effect. This is partly because most of the benchmarks operate on uniformly

tiled sequences and hence perform well with the default OpenMP schedule. The notable

exception is SpMV, which operates on irregularly nested sequences. However, as described

by Ohshima et al. [58], the OpenMP scheduling policy seems to affect SpMV performance

only when the number of nonzeros is extremely high.

5.5.3 Productivity Gains

We provide a rough measure of productivity by counting the source lines of code required

in Surge to express the core computations of our benchmarks (memory management code

is not included) and comparing it with the number of lines required to express the same

computation in the reference CUDA and OpenMP implementations. In the absence of

a superior metric, we believe this captures the conciseness of Surge programs, while still

maintaining readability. The last three columns of Table 5.8 show this comparison.

5.6 Summary
This chapter has presented Surge, a nested data-parallel programming system targeted

at application developers and nonexpert programmers. By using a two-level mechanism to

decouple nested data-parallel computations from their implementations, it is able to system-

atically generate code variants for multiple platforms. Generated variants are then passed on

to Nitro for execution context-aware autotuning. For five real-world benchmarks expressed in

Surge, we demonstrate performance that is on par with or better than handcrafted reference

implementations on both CPUs and GPUs.

CHAPTER 6

RELATED WORK

Adaptive programming has been extensively studied in the literature. This chapter

surveys past and current work in this area and is split into two parts. First, we look at

past research on the use of autotuning for supporting adaptivity: specifically, we describe

research efforts in the areas of parameter and code variant tuning, input and architecture

adaptivity, and multiobjective tuning. We then conclude by looking at past work on higher

level programming systems, and comparing it to our work on Surge.

6.1 Autotuning for Adaptive Programming
A large body of research on adaptive programming has focused on using autotuning

techniques; in this section, we review relevant prior work on parameter, domain-specific,

input-adaptive, architecture-adaptive, and multiobjective tuning, and compare it to the

code variant tuning strategies described in this dissertation.

6.1.1 Parameter and Domain-Specific Autotuning

A number of systems support the expression and tuning of optimization parameters.

Examples of such systems include Active Harmony [59] (integrated with the CHiLL loop

transformation framework [60] to generate variants), POET [61], Orio [62], and more re-

cently, OpenTuner [4]. These can be adapted for code variant generation and tuning

using parameterized templates which specify how to generate new variants based on the

values of the parameters in the template (found through search). Since parameter tuning

cannot capture the algorithm variants used in our study, this work is complementary to our

approach.

In addition to general-purpose frameworks, various autotuning systems and techniques

have been built to aid in the development of efficient and portable applications for specific

domains. Examples of such systems include ATLAS [63], PhiPAC [64], and OSKI [18] for

83

linear algebra, [65], FFTW [66] and SPIRAL [67] for signal processing, [68]–[70] for stencil

computations, and [71] for sorting.

6.1.2 Code Variant Tuning

Several programmer-directed autotuning frameworks support tuning of code variants.

Petabricks [8] supports user specification of transforms that are analogous to functions.

Transforms are automatically composed together to form hybrid algorithms using a compiler

framework and an adaptive algorithm [72]. Petabricks, however, implicitly tunes variants for

the size of the input dataset. Our strategy for input-adaptive tuning, on the other hand, can

tune based on any user-defined characteristic of the input data. Brewer [73] describes a code

variant selection system that uses linear regression to predict the performance of individual

variants based on input parameters. The variant with the lowest predicted runtime is then

selected. Sequoia selects variants with user guidance for recursive algorithms that target the

memory hierarchy [7].

The closely related problem of algorithm selection was first formally stated and studied by

Rice in 1976 [14]. Vuduc [15] provides an evaluation of statistical learning techniques in the

context of algorithm selection. Lagoudakis and Littman [16] model the algorithm selection

problem as a Markov Decision Process and use Reinforcement Learning techniques to solve

it. Guo proposes the use of Bayesian Networks to learn the mapping from input features to

code variants [17]. Petabricks uses a bottom-up evolutionary algorithm named INCREA [72]

which builds a tuned algorithm for a specific problem size by incrementally composing tuned

algorithms for smaller problem sizes. Other work in this area includes [74]–[77]. Luo et

al. [78] propose a system for code variant selection based on input sizes and compare the

prediction performance of various classifiers. Many of these techniques can be integrated

into Nitro’s learning subsystem, thus replacing or augmenting the SVM-based technique

currently employed for input-adaptive tuning.

6.1.3 Architecture-Adaptive Tuning

Performance counters have been used to predict and guide code tuning and compiler

optimizations. Cavazos et al. [79] use performance counters to determine good compiler

optimization settings. Machine learning is used to learn relationships between performance

counter and optimal code optimization settings. Another system introduced by Parello et

al. [80] uses performance counter data to systematically optimize programs by identifying

performance anomalies. This system uses a decision tree to iteratively fix performance issues

by applying optimization schemes to remedy the performance anomalies encountered. In

84

comparison, our strategy for architecture-adaptive tuning uses machine learning to build

a relationship between performance counters and best device feature subsets, which are

subsequently used for cross-architectural tuning.

Machine learning has been extensively used in guiding performance optimizations, as

heuristics and exhaustive search are often not practical. Supervised classification has been

used to predict unroll factors to improve performance [81]. This problem can be seen as a

variant selection problem where the selection depends on features extracted from the code

itself. Magni et al. [82] address the tuning of OpenCL code across architectures by applying

a thread-coarsening transformation to the code. A machine learning technique is employed

to predict the optimal coarsening factor for these transformations. Our strategy does not

apply transformations to the code but rather works with an existing set of variants and does

not require training on the target architecture.

In summary, to our knowledge we are the first to adapt code variant selection across

architectures without retraining, formulating this as a multitask learning problem.

6.1.4 Energy and Power Efficiency Tuning on GPUs

Recent work on improving energy and power efficiency on GPUs has primarily focused on

dynamic voltage and frequency scaling (DVFS) [83], [84]. DVFS is often coupled with other

optimization techniques such as concurrent kernel execution [13] to improve energy/power

efficiency. A survey of existing GPU DVFS techniques is provided by Mittal et al. [85]. To

our knowledge, we are the first to demonstrate energy and power efficiency gains on the

GPU using execution context-adaptive code variant and frequency selection.

6.2 High-Level Parallel Programming Systems
In this section, we compare the Surge programming system to relevant prior work on

nested data parallelism, techniques to decouple computation from implementation, and

programming models that support autotuning.

6.2.1 Nested Data-Parallelism

A majority of existing nested data-parallel programming models automatically employ

the flattening transformation to convert nested data-parallel operations into flat data-parallel

operations [46], [86], [87], which may not be always optimal (see, for example, [88]). This

is especially true on architectures such as GPUs, which expose a hierarchical parallelism

structure. The notable exceptions are Copperhead [89] and CuNesl [90], which support

compiling nested data-parallel operations to match the hierarchical parallelism available in

85

GPUs. This mapping to hardware, however, is performed automatically by the CuNesl and

Copperhead compilers and, unlike Surge (which exposes schedules and policies as part of

the programming interface), no mechanism is exposed for experimentation with different

mapping and implementation strategies.

6.2.2 Decoupling Computation and Implementation

Outside the realm of nested data-parallel programming models, the concept of decou-

pling the specification of a computation from its implementation has been explored in the

literature. Some flat data-parallel models such as Haskell Parseq [91] and Thrust [50], and

more recently, C++17 extensions for parallelism [92], support the use of constructs such

as par and seq to guide the evaluation of data-parallel operators. The Haskell REPA

library [93] supports operators such as map and foldAllP and supports lazy evaluation

on numeric arrays. The Galois system [94] adopts a worklist-based approach to enable

parallelization of irregular computations, and supports the use of various decoupled runtime

schedulers to process work items in parallel. Declarative task-based programming models

such as Concurrent Collections (CnC) [95] decouple the high-level program task-graph from

its hardware implementation. Computations at the task level are then explicitly specified

using a number of different parallel programming models. Charm++ [96] provides an asyn-

chronous message-passing model to describe parallel programs. Halide [1] and Elixir [2] are

domain-specific languages that enable users to decouple the specification of image processing

pipelines and graph workloads, respectively, from their implementations using schedules.

The Delite domain-specific language (DSL) compiler framework [97] uses Lightweight Mod-

ular Staging [98] to build an intermediate representation which can represent both parallel

patterns and domain-specific constructs. The Delite compiler then compiles parts of the

IR to Scala, C++, or CUDA. Similarly, the Lime [99] compiler generates Java code for

the entire program, plus OpenCL for GPUs and Verilog for FPGAs; the Liquid Metal

Runtime [100] then selects which compiled code to use. Systems such as OpenMP [101] and

OpenACC [102], and loop transformation frameworks provide directive-based approaches

to parallelize sequential code. Our work, in contrast, is specifically focused on nested

data parallelism. Existing systems such as the ones described above, however, need not

be mutually exclusive with Surge. For example, languages such as CnC define an entirely

separate coordination language within which the programmer describes the data-parallel

computation. A combined system can make use of Surge to provide the finer-grained data

parallelism.

86

6.2.3 Programming Models Supporting Autotuning

Recent work has explored the integration of autotuning into parallel programming mod-

els. In Tangram [103], expert programmers specify a spectrum of codelets, and the Tangram

compiler composes them to generate new ones; the best codelet is then chosen through

autotuning. While both Surge and Tangram target performance portability, Surge exposes

a higher level, functional interface for expressing computations that does not require expert

knowledge to generate high-performance code. Steuwer et al. [104] describe a system

that transforms high-level functional expressions into OpenCL code using a set of rewrite

rules. By exploring the space of rewrite rules, multiple implementations are generated

and autotuned. While this system specifically targets OpenCL code generation, Surge is

not designed with any particular platform in mind. It provides separate mechanisms for

generating platform-independent implementation strategies (based on schedules), and for

customizing these strategies for any target platform (through policies).

6.3 Summary
This chapter has surveyed past and current work in the area of adaptive programming,

and compared the strategies presented in this dissertation with relevant past research on

autotuning and high-level parallel programming systems. This dissertation makes contri-

butions to the area of adaptive programming by presenting novel research in the areas of

input-adaptive code variant selection (based on metainformation other than input size),

architecture-adaptive tuning based on multitask learning, and multiobjective code variant

and core clock frequency selection. Additionally, our work on Surge introduces a high-level

nested data-parallel programming system, tightly integrated with the aforementioned code

variant tuning schemes, to target performance portability.

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

This dissertation has presented a framework for adaptive programming, including ab-

stractions for both expert programmers and application developers, and techniques for

input-adaptive, architecture-adaptive, and multiobjective tuning. This chapter summarizes

the contributions of this dissertation and discusses potential directions for future research.

7.1 Contributions
The individual contributions we have presented in this dissertation are:

1. Nitro, a framework for code variant tuning targeted at expert programmers [57]. We

demonstrated how it supports the convenient expression of code variants, together

with metainformation for selecting among variants. Further, we showed how it can be

used as a substrate for implementing a number of strategies for adaptivity, including

support for input-adaptive, architecture-adaptive, and multiobjective tuning.

2. A strategy for input-adaptive code variant selection based on support vector machine

(SVM) classification [57]. We additionally described an incremental tuning mode,

based on the best-vs-second-best (BvSB) active learning heuristic, that achieves sub-

stantial reduction in the training set size. On five high-performance GPU applications,

we demonstrated how variants tuned using our strategy achieve over 93% of the

performance of variants selected through exhaustive search, averaged over the testing

inputs.

3. A novel approach for architecture-adaptive code variant tuning based on multitask

learning [105]. Additionally, we introduced profiling and cross-validation-based tech-

niques for pruning device features and demonstrated their importance. Finally, we

presented performance results on a set of six benchmark applications and a collection

of six NVIDIA GPUs from three distinct architecture generations.

88

4. A strategy for multiobjective code variant and core clock frequency selection. In

particular, we demonstrated how to build a sorting implementation for the NVIDIA

Jetson TK1 and Tesla K80 GPUs that provides improved energy and power efficiency

with less than a proportional drop in sorting throughput.

5. Surge, a nested data-parallel programming system that decouples the high-level spec-

ification of computations from their low-level hardware implementations using two

first-class language constructs named schedules and policies [106]. For five benchmarks

expressed in Surge, we demonstrated performance that is on par with or better than

handcrafted reference implementations on both CPUs and GPUs.

7.2 Future Work
With the initial framework for adaptive programming in place, we envision a number

of possible directions for future research. In this section, we discuss some of these ideas,

including adding support for tunable parameters, tuning approximate computations, and

operator transformations in Surge.

7.2.1 Support for Tunable Parameters

Optimization parameters are often used in autotuning systems to express large and

continuous search spaces. While this dissertation has focused on code variants, we believe

that a system capable of tuning both code variants and parameters can be extremely useful,

as it would enable concise expression of much larger and richer search spaces. When given

an input at runtime, such a system would be able to not only predict the optimal variant,

but also values of the parameters. In this discussion, let V be the set of code variants, with

each variant v having its own set of optimization parameters Tv.

A simple way to support tuning of parameters is to treat them as code variants; in

this case, each unique value of a parameter would correspond to a different code variant.

However, since code variant search spaces are assumed to be noncontinuous (for example,

each variant may represent a fundamentally different algorithm), this approach ends up not

utilizing any continuity that often exists in parameter search spaces; instead, the resulting

space is searched exhaustively in the training phase for each input, leading to potentially

high training overhead, especially when the search space is large. To overcome this issue,

we plan to explore the following strategies that instead employ search heuristics to navigate

parameter spaces:

89

• Online parameter search: A simple approach would be to not build any model for

parameters; instead, build only a variant selection model, keeping each Tv fixed at

user-specified default values. At runtime, the system performs a parameter search

(using heuristics such as Nelder-Mead simplex [3]) to find optimal values of Tk, where

k is the selected variant, and caches its value for use in subsequent calls to the same

computation with the same input. While simple to implement, this approach would

suffer from considerable runtime overhead; nevertheless, due to caching, it is expected

to perform well when the same computation is called repeatedly with the same input.

• Multilevel search: This strategy involves building a model for variant selection, to-

gether with |V | models for predicting parameter values for each variant. Techniques

such as Kernel Canonical Correlation Analaysis (KCCA) [107] could be used to build

the parameter models. The training phase would involve a full search of the pa-

rameter space corresponding to each variant for each training input, and could be

implemented using existing parameter tuning frameworks such as Active Harmony [3]

or OpenTuner [4]. Once optimal parameter values for each variant are known, the best

variant can then be computed for the training input being considered. This strategy

is expected to yield good variant and parameter models, but could be impractical due

to the very high overhead of training data collection.

• Restricted multilevel search: To cut down its training time, we could make a simple

modification to the above strategy: in the training phase, instead of first finding

optimal parameter values and then variants, do it in the reverse order. If all Tv’s are

initially fixed at user-specified default values, it would be possible to first find the best

variant, say k, and then perform a parameter search for variant k alone. This approach

reduces training time, and has the additional advantage of not constructing unneeded

parameter models (if certain variants are never selected on the given architecture).

However, this approach may result in lower accuracy if parameter values strongly

influence variant performance.

• Active learning-based approaches: Another promising approach involves augmenting

the active learning-based incremental tuning mode described in Section 2.2.2 to also

handle parameter models. The basic strategy will be similar to multilevel search

described above, with the additional goal to reduce the number of inputs required to

train the variant and parameter models. Existing active learning-based techniques for

90

logistic regression, such as the one described by Schein et al. [108], could be extended

to achieve this.

7.2.2 Tuning Approximate Computations

Approximate computing trades off computation quality for gains in performance and en-

ergy/power efficiency. Systems that support approximate computing typically permit users

to specify error-tolerant regions of code, together with acceptable error bounds. The system

then tries to come up with an optimized implementation that produces less accurate results

(subject to error bounds) and ideally better performance and energy/power efficiency. While

recent work has demonstrated a number of successes in employing approximation [109], we

are not aware of any systems that also take factors of execution context into account.

We believe that the techniques for adaptive programming described in this dissertation

can be straightforwardly extended to accommodate approximate computing. For instance,

we could add a construct for specifying acceptable error bounds for approximation in Surge.

The code generation infrastructure would then be able to generate variants that satisfy these

bounds, which would in turn be tuned for multiple optimization objectives by Nitro.

7.2.3 Extensions to Surge

Surge, in its current form, is capable of achieving on-par or better performance than

manually optimized code running on CPUs and GPUs, as demonstrated in Chapter 5.

However, we believe that there are still a number of opportunities to improve Surge and

make it a more useful system. In this subsection, we discuss two such ideas: operator

transformations and intercomputation optimizations.

7.2.3.1 Operator Transformations

While Surge schedules can be transformed using rewrite rules, there are a number of

cases where transforming operators can also be useful. For example, on multi-GPU systems,

it may be beneficial to tile a map operator into map.map, with the outer map’s iterations

assigned to multiple GPUs, and the inner one’s to a single GPU. Since expression sequences

are already captured in Surge, it would be straightforward to add new rewrite rules targeted

at operators. The code generator could then be correspondingly extended to first rewrite

operators, and then schedules, resulting in a richer search space of implementations for

autotuning.

91

7.2.3.2 Intercomputation Optimizations

Certain operator transformations cross computation boundaries; for example, fusion

of operators in adjacent computations (akin to loop fusion [110]). While Surge could

be extended to collect expression trees for the entire program (as opposed to a single

computation), such transformations will additionally require more powerful dependence

checking and code generation facilities. We plan to explore the use of compiler frameworks

such as CHiLL [111] to implement such transformations.

7.3 Summary
The increasing complexity and diversity of parallel architectures will place a tremendous

burden on programmers, who will be forced to constantly rewrite and reoptimize code. The

additional challenge of optimizing for multiple, possibly conflicting optimization objectives

such as performance and energy/power efficiency compounds this problem. This dissertation

has presented novel strategies and abstractions for adaptive programming which reduce the

burden on the programmer considerably. While the problem of adaptive programming is far

from solved, we believe that this dissertation also provides an important step towards more

sophisticated techniques such as adapting code to unseen, currently nonexistent architec-

tures.

REFERENCES

[1] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI ’13.
ACM, 2013, pp. 519–530.

[2] D. Prountzos, R. Manevich, and K. Pingali, “Elixir: A system for synthesizing
concurrent graph programs,” in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, ser. OOPSLA ’12.
ACM, 2012, pp. 375–394.

[3] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth, “A scalable auto-tuning
framework for compiler optimization,” in Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, May 2009, pp. 1–12.

[4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly,
and S. Amarasinghe, “Opentuner: An extensible framework for program autotuning,”
in Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, ser. PACT ’14. ACM, 2014, pp. 303–316.

[5] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amaras-
inghe, “PetaBricks: A language and compiler for algorithmic choice,” in Proceedings
of the 2009 ACM SIGPLAN conference on Programming language design and imple-
mentation, ser. PLDI ’09. New York, NY, USA: ACM, 2009, pp. 38–49.

[6] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and S. Amarasinghe,
“Autotuning algorithmic choice for input sensitivity,” in Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, ser.
PLDI 2015, 2015.

[7] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez,
M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia: programming the memory
hierarchy,” in Proceedings of the 2006 ACM/IEEE conference on Supercomputing, ser.
SC ’06, 2006.

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amaras-
inghe, “Petabricks: a language and compiler for algorithmic choice,” in Proceedings of
the 2009 ACM SIGPLAN conference on Programming language design and implemen-
tation, ser. PLDI ’09, 2009, pp. 38–49.

[9] N. Bell and M. Garland, “Generic parallel algorithms for sparse matrix and graph
computations,” 2009. [Online]. Available: http://code.google.com/p/cusp-library/

http://code.google.com/p/cusp-library/

93

[10] A. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class active learning for image
classification,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, june 2009, pp. 2372 –2379.

[11] D. Merrill, “Cuda unbound (cub),” http://nvlabs.github.io/cub/.

[12] A. Mishra and N. Khare, “Analysis of dvfs techniques for improving the gpu energy
efficiency,” Open Journal of Energy Efficiency, vol. 4, no. 04, p. 77, 2015.

[13] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving gpgpu energy-efficiency
through concurrent kernel execution and dvfs,” in Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, ser.
CGO ’15. IEEE Computer Society, 2015, pp. 1–11.

[14] J. R. Rice, “The algorithm selection problem,” Advances in Computers, vol. 15, pp.
65–118, 1976.

[15] R. Vuduc, J. W. Demmel, and J. A. Bilmes, “Statistical models for empirical search-
based performance tuning,” Int. J. High Perform. Comput. Appl., vol. 18, no. 1, pp.
65–94, Feb. 2004.

[16] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforcement
learning,” in Proceedings of the Seventeenth International Conference on Machine
Learning, ser. ICML ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2000, pp. 511–518.

[17] H. Guo, “A bayesian approach for automatic algorithm selection,” in Proceedings of the
IJCAI Workshop on AI and Autonomic Computing: Developing a Research Agenda
for Self-Managing Computer Systems, 2003.

[18] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of automatically tuned
sparse matrix kernels,” Journal of Physics: Conference Series, vol. 16, no. 1, pp.
521–530, 2005.

[19] D. Guo and W. Gropp, “Optimizing Sparse Data Structures for Matrix-Vector Multi-
ply,” International Journal of High Performance Computing Applications, vol. 25, pp.
115–131, 2011.

[20] R. Vuduc and H. Moon, “Fast Sparse Matrix-Vector Multiplication by Exploiting
Variable Block Structure,” in Proceedings of the High Performance Computing and
Communications, volume 3726 of LNCS. Springer, 2005, pp. 807–816.

[21] E. Im, K. A. Yelick, and R. Vuduc, “Sparsity: Optimization Framework for Sparse
Matrix Kernels,” Int. J. High Perform. Comput. Appl., vol. 18, no. 1, pp. 135–158,
2004.

[22] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” in SC ’09: Proc. Conference on High Performance
Computing Networking, Storage and Analysis, Nov. 2009.

[23] V. N. Vapnik, Statistical learning theory. Wiley, New York, 1998.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

94

[25] M. D. Buhmann, Radial Basis Functions. New York, NY, USA: Cambridge University
Press, 2003.

[26] B. Settles, “Active learning literature survey,” University of Wisconsin–Madison,
Computer Sciences Technical Report 1648, 2009. [Online]. Available: http:
//axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf

[27] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor
Parallelism. O’Reilly, 2007.

[28] T. Davis, “The University of Florida Sparse Matrix Collection,” ACM Transactions on
Mathematical Software, vol. 38, pp. 1:1–1:25, 2011.

[29] M. A. Heroux, P. Raghavan, and H. D. Simon, Parallel Processing for Scientific
Computing (Software, Environments and Tools). Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2006.

[30] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management
of parallelism in object oriented numerical software libraries,” in Modern Software
Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.
Birkhäuser Press, 1997, pp. 163–202.

[31] E. Photonics and Nvidia, “CULA | sparse,” http://www.culatools.com/.

[32] S. Bhowmick, B. Toth, and P. Raghavan, “Towards low-cost, high-accuracy classifiers
for linear solver selection,” in Proceedings of the 9th International Conference on
Computational Science: Part I, ser. ICCS ’09, 2009, pp. 463–472.

[33] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traversal,” in
Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’12, 2012, pp. 117–128.

[34] D. Merrill and et al., “Back40 computing,” 2012. [Online]. Available: http:
//code.google.com/p/back40computing/

[35] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric
consistency for large scale image search,” in European Conference on Computer Vision,
ser. LNCS, A. Z. David Forsyth, Philip Torr, Ed., vol. I. Springer, oct 2008, pp.
304–317.

[36] S. Baxter, “Modern GPU,” http://nvlabs.github.io/moderngpu/.

[37] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, pp. 41–75, Jul. 1997.

[38] E. V. Bonilla, F. V. Agakov, and C. K. I. Williams, “Kernel multi-task learning using
task-specific features,” in Proceedings of the 11th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2007.

[39] S. Sanfilippo and P. Noordhuis, “Redis,” http://redis.io.

[40] B. Catanzaro, A. Keller, and M. Garland, “A decomposition for in-place matrix
transposition,” in Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’14. New York, NY, USA: ACM,
2014, pp. 193–206.

http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://code.google.com/p/back40computing/
http://code.google.com/p/back40computing/

95

[41] B. Catanzaro, “In-place matrix transposition,” https://github.com/bryancatanzaro/
inplace.

[42] H. Jordan, P. Thoman, J. Durillo, S. Pellegrini, P. Gschwandtner, T. Fahringer, and
H. Moritsch, “A multi-objective auto-tuning framework for parallel codes,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, Nov 2012, pp. 1–12.

[43] P. Gschwandtner, J. J. Durillo, and T. Fahringer, Euro-Par 2014 Parallel Processing:
20th International Conference, Porto, Portugal, August 25-29, 2014. Proceedings.
Springer International Publishing, 2014, ch. Multi-Objective Auto-Tuning with In-
sieme: Optimization and Trade-Off Analysis for Time, Energy and Resource Usage,
pp. 87–98.

[44] R. S. Chen and J. K. Hollingsworth, “Angel: A hierarchical approach to multi-objective
online auto-tuning,” in Proceedings of the 5th International Workshop on Runtime and
Operating Systems for Supercomputers, ser. ROSS ’15. ACM, 2015, pp. 4:1–4:8.

[45] S. Muralidharan, “GPU Frequency Library,” http://github.com/54ur4v/gpu_freqlib.

[46] G. E. Blelloch, “NESL: A nested data-parallel language,” Tech. Rep. CMU-CS-95-170,
1992.

[47] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, ser. SC ’09, 2009, pp. 18:1–18:11.

[48] P. Hudak, “Building domain-specific embedded languages,” ACM Comput. Surv.,
vol. 28, no. 4es, Dec. 1996.

[49] T. Veldhuizen, “Expression templates,” C++ Report, vol. 7, no. 5, pp. 26–31, 1995.

[50] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for CUDA,” GPU
Computing Gems, vol. 7, 2011.

[51] “Intel Math Kernel Library,” https://software.intel.com/en-us/intel-mkl.

[52] S. Lloyd, “Least squares quantization in PCM,” Information Theory, IEEE Transac-
tions on, vol. 28, no. 2, pp. 129–137, Mar 1982.

[53] “DoE Exascale Co-Design Center for Materials in Extreme Environments,” http://
www.exmatex.org.

[54] N. Sakharnykh, “CoMD-CUDA,” https://github.com/NVIDIA/CoMD-CUDA, 2013.

[55] D. Merrill and A. Grimshaw, “High performance and scalable radix sorting: A case
study of implementing dynamic parallelism for gpu computing,” Parallel Processing
Letters, vol. 21, no. 02, pp. 245–272, 2011.

[56] T. Davis, “The University of Florida Sparse Matrix Collection,” ACM Transactions on
Mathematical Software, vol. 38, pp. 1:1–1:25, 2011.

[57] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro, “Nitro: A
framework for adaptive code variant tuning,” in Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, ser. IPDPS ’14. IEEE
Computer Society, 2014, pp. 501–512.

https://github.com/bryancatanzaro/inplace
https://github.com/bryancatanzaro/inplace
https://software.intel.com/en-us/intel-mkl
http://www.exmatex.org
http://www.exmatex.org
https://github.com/NVIDIA/CoMD-CUDA

96

[58] S. Ohshima, T. Katagiri, and M. Matsumoto, “Performance optimization of SpMV
using CRS format by considering OpenMP scheduling on CPUs and MIC,” in Embed-
ded Multicore/Manycore SoCs (MCSoc), 2014 IEEE 8th International Symposium on,
Sept 2014, pp. 253–260.

[59] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth, “A scalable auto-tuning
framework for compiler optimization,” in Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, May 2009, pp. 1–12.

[60] C. Chen, “Model-guided empirical optimization for memory hierarchy,” Ph.D. disser-
tation, University of Southern California, May 2007.

[61] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan, “Poet: Parameterized
optimizations for empirical tuning,” in Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, 2007, pp. 1–8.

[62] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical performance
tuning using Orio,” in IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), Rome, Italy, 2009.

[63] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing matrix multiply
using PHiPAC: A portable, high-performance, ANSI C coding methodology,” in
International Conference on Supercomputing, 1997, pp. 340–347.

[64] R. Whaley and D. Whalley, “Timing high performance kernels through empirical
compilation,” in International Conference on Parallel Processing, 2005, pp. 89–98.

[65] F. de Mesmay, Y. Voronenko, and M. Puschel, “Offline library adaptation using
automatically generated heuristics,” in Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, April 2010, pp. 1–10.

[66] M. Frigo and S. G. Johnson, “The fastest Fourier transform in the West,” MIT Lab
for Computer Science, Tech. Rep. MIT-LCS-TR728, 1997.

[67] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,
“SPIRAL: Code generation for DSP transforms,” Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and Adaptation”, vol. 93, no. 2, pp. 232–
275, 2005.

[68] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures,”
in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, May
2011, pp. 676–687.

[69] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures,” in Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, ser. SC ’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 4:1–4:12.

[70] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-tuning framework
for parallel multicore stencil computations,” in International Parallel and Distributed
Processing Symposium, 2010.

97

[71] X. Li, M. Garzaran, and D. Padua, “Optimizing sorting with genetic algorithms,” in
Code Generation and Optimization, 2005. CGO 2005. International Symposium on,
March 2005, pp. 99–110.

[72] J. Ansel, M. Pacula, S. Amarasinghe, and U.-M. O’Reilly, “An efficient evolutionary
algorithm for solving bottom up problems,” in Annual Conference on Genetic and
Evolutionary Computation, Dublin, Ireland, July 2011.

[73] E. A. Brewer, “High-level optimization via automated statistical modeling,” in Pro-
ceedings of the fifth ACM SIGPLAN symposium on Principles and practice of parallel
programming, ser. PPOPP ’95, 1995, pp. 80–91.

[74] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham, “A
portfolio approach to algorithm select,” in Proceedings of the 18th International Joint
Conference on Artificial Intelligence, ser. IJCAI’03. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2003, pp. 1542–1543.

[75] L. Kotthoff, I. P. Gent, and I. Miguel, “A preliminary evaluation of machine learning
in algorithm selection for search problems,” in Fourth Annual Symposium on Combi-
natorial Search, 2011.

[76] L. Lobjois and M. Lemaître, “Branch and bound algorithm selection by performance
prediction,” in Proceedings of the Fifteenth National/Tenth Conference on Artificial
Intelligence/Innovative Applications of Artificial Intelligence, ser. AAAI ’98/IAAI ’98.
Menlo Park, CA, USA: American Association for Artificial Intelligence, 1998, pp.
353–358.

[77] A. Guerri and M. Milano, “Learning techniques for automatic algorithm portfolio
selection,” in Proceedings of the 16th Eureopean Conference on Artificial Intelligence,
(ECAI 2004). IOS Press, 2004, pp. 475–479.

[78] L. Luo, Y. Chen, C. Wu, S. Long, and G. Fursin, “Finding representative sets
of optimizations for adaptive multiversioning applications,” in In 3rd Workshop on
Statistical and Machine Learning Approaches Applied to Architectures and Compilation
(SMART’09), colocated with HiPEAC’09 conference, 2009.

[79] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam,
“Rapidly selecting good compiler optimizations using performance counters,” in Pro-
ceedings of the International Symposium on Code Generation and Optimization, ser.
CGO ’07. IEEE Computer Society, 2007, pp. 185–197.

[80] D. Parello, O. Temam, A. Cohen, and J. Verdun, “Towards a systematic, pragmatic
and architecture-aware program optimization process for complex processors,” in
Proceedings of the ACM/IEEE SC2004 Conference on High Performance Networking
and Computing, Pittsburgh, PA, USA, 2004.

[81] M. Stephenson and S. Amarasinghe, “Predicting unroll factors using supervised clas-
sification,” in Proceedings of the International Symposium on Code Generation and
Optimization, ser. CGO ’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 123–134.

[82] A. Magni, C. Dubach, and M. F. P. O’Boyle, “A large-scale cross-architecture eval-
uation of thread-coarsening,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: ACM, 2013, pp. 11:1–11:11.

98

[83] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong, “Effects of dynamic
voltage and frequency scaling on a k20 gpu,” in Parallel Processing (ICPP), 2013 42nd
International Conference on, Oct 2013, pp. 826–833.

[84] D. You and K.-S. Chung, “Dynamic voltage and frequency scaling framework for low-
power embedded gpus,” Electronics Letters, vol. 48, no. 21, pp. 1333–1334, 2012.

[85] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and improving gpu
energy efficiency,” ACM Comput. Surv., vol. 47, no. 2, pp. 19:1–19:23, Aug. 2014.

[86] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow,
“Data parallel Haskell: A status report,” in Proceedings of the 2007 Workshop on
Declarative Aspects of Multicore Programming, ser. DAMP ’07. ACM, 2007, pp.
10–18.

[87] L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, S. Rosen, and A. Shaw, “Data-only
flattening for nested data parallelism,” in Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser. PPoPP ’13.
ACM, 2013, pp. 81–92.

[88] G. Keller, M. M. Chakravarty, R. Leshchinskiy, B. Lippmeier, and S. Peyton Jones,
“Vectorisation avoidance,” in Proceedings of the 2012 Haskell Symposium, ser. Haskell
’12. ACM, 2012, pp. 37–48.

[89] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: Compiling an embedded
data parallel language,” in Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’11. ACM, 2011, pp. 47–56.

[90] Y. Zhang and F. Mueller, “CuNesl: Compiling nested data-parallel languages for SIMT
architectures,” in Parallel Processing (ICPP), 2012 41st International Conference on,
Sept 2012, pp. 340–349.

[91] S. P. Jones and S. Singh, “A tutorial on parallel and concurrent programming in
Haskell,” in Proceedings of the 6th International Conference on Advanced Functional
Programming, ser. AFP’08. Springer-Verlag, 2009, pp. 267–305.

[92] ISO/IEC, “Programming Languages — Technical Specification for C++ Extensions
for Parallelism,” http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.
pdf, 2015.

[93] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lippmeier,
“Regular, shape-polymorphic, parallel arrays in Haskell,” in Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Programming, ser. ICFP ’10.
ACM, 2010, pp. 261–272.

[94] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.
Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui, “The Tao
of parallelism in algorithms,” in Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’11. ACM, 2011,
pp. 12–25.

[95] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg,
D. Peixotto, V. Sarkar, F. Schlimbach, and S. Taşirlar, “Concurrent collections,” Sci.
Program., vol. 18, no. 3-4, pp. 203–217, Aug. 2010.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf

99

[96] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object oriented system
based on C++,” in Proceedings of the Eighth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications, ser. OOPSLA ’93. ACM, 1993,
pp. 91–108.

[97] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “A heterogeneous parallel framework for domain-specific languages,”
in Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on, Oct 2011, pp. 89–100.

[98] T. Rompf and M. Odersky, “Lightweight modular staging: A pragmatic approach to
runtime code generation and compiled dsls,” in Proceedings of the Ninth International
Conference on Generative Programming and Component Engineering, ser. GPCE ’10.
ACM, 2010, pp. 127–136.

[99] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: A java-compatible and
synthesizable language for heterogeneous architectures,” in Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’10. ACM, 2010, pp. 89–108.

[100] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rabbah, and S. Shukla,
“A compiler and runtime for heterogeneous computing,” in Proceedings of the 49th
Annual Design Automation Conference, ser. DAC ’12. ACM, 2012, pp. 271–276.

[101] L. Dagum and R. Menon, “OpenMP: an industry standard api for shared-memory
programming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46–55,
1998.

[102] “The OpenACC Specification version 2.0a,” http://www.openacc.org/sites/default/
files\discretionary{-}{}{}/OpenACC.2.0a_1.pdf, 2015.

[103] L.-W. Chang, A. Dakkak, C. I. Rodrigues, and W.-m. Hwu, “Tangram: a high-level
language for performance portable code synthesis,” in Programmability Issues for
Heterogeneous Multicores, 2015.

[104] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach, “Generating performance portable
code using rewrite rules: From high-level functional expressions to high-performance
opencl code,” in Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ser. ICFP 2015. New York, NY, USA: ACM, 2015, pp.
205–217.

[105] S. Muralidharan, A. Roy, M. Hall, M. Garland, and P. Rai, “Architecture-adaptive
code variant tuning,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’16. ACM, 2016, pp. 325–338.

[106] S. Muralidharan, M. Garland, B. Catanzaro, A. Sidelnik, and M. Hall, “A collection-
oriented programming model for performance portability,” in Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP 2015. ACM, 2015, pp. 263–264.

[107] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A case for machine learning to
optimize multicore performance,” in Proceedings of the First USENIX conference on
Hot topics in parallelism, ser. HotPar’09. Berkeley, CA, USA: USENIX Association,
2009.

http://www.openacc.org/sites/default/files\discretionary {-}{}{}/OpenACC.2.0a_1.pdf
http://www.openacc.org/sites/default/files\discretionary {-}{}{}/OpenACC.2.0a_1.pdf

100

[108] A. I. Schein and L. H. Ungar, “Active learning for logistic regression: an evaluation,”
Machine Learning, vol. 68, no. 3, pp. 235–265, 2007.

[109] S. Mittal, “A survey of techniques for approximate computing,” ACM Comput. Surv.,
vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016.

[110] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. MIT Press, 1990.

[111] C. Chen, J. Chame, and M. W. Hall, “CHiLL: A framework for composing high-level
loop transformations,” University of Southern California, Technical Report 08-897,
Jun 2008. [Online]. Available: http://www.cs.usc.edu/research/08-897.pdf

http://www.cs.usc.edu/research/08-897.pdf

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgements
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Abstractions for Adaptive Programming
	Supporting Expert Programmers
	Supporting Application Developers

	Adaptive Code Variant Selection.
	Input Adaptivity
	Architecture Adaptivity
	Multiobjective Tuning

	Contributions
	Dissertation Roadmap

	=10000=10000=0Input-Adaptive Tuning
	-22pt
	Automating Code Variant Selection
	Nitro System Overview
	Nitro Library Constructs
	Defining and Adding Code Variants
	Defining Input Features
	Defining Constraints

	Nitro Autotuner Interface

	The Nitro Autotuner
	Building a Model for Variant Selection
	Incremental Tuning to Reduce Training Inputs
	Optimizing Feature and Constraint Evaluation

	Benchmarks
	Sparse Matrix-Vector Multiplication (SpMV)
	Linear Solvers and Preconditioners
	Breadth-First Search (BFS)
	Histogram
	Sort

	Results
	Variant Selection
	Sparse Matrix-Vector Multiplication
	Linear Solvers and Preconditioners
	Breadth-First Search
	Histogram
	Sort

	Training Time Reduction
	Feature Evaluation Overhead

	Summary

	=10000=10000=0Architecture-Adaptive Tuning
	-22pt
	System Overview
	Tuning Process
	Model Construction Using MTL
	Utilizing the Full Set of Device Features
	Source Architecture Side
	Target Architecture Side

	Profile Device Feature Selection (P-DFS)
	Application Proxies
	Application Proxy Profiling
	Source Architecture Side
	Target Architecture Side

	Cross-Validation Device Feature Selection (CV-DFS)

	Implementation
	Benchmarks
	Histogram
	Sparse Matrix-Vector Multiplication (SpMV)
	Sort
	Breadth-First Search (BFS)
	Linear Solvers and Preconditioners
	Matrix Transposition

	Results
	Architecture Sensitivity of Benchmarks
	Prediction Performance
	Device Feature Selection Overhead
	Results Summary

	Summary

	=10000=10000=0Tuning for Energy and Power Efficiency
	-22pt
	Multiobjective Tuning in Nitro
	Extensions to Autotuning Interface
	Combining Code Variant and Frequency Selection

	Energy and Power-Efficient GPU Sorting
	Aggregated Metrics for Sorting

	Experimental Methodology
	Target Architectures
	NVIDIA Tesla K80
	NVIDIA Jetson TK1

	Input Data

	Experimental Results
	Summary

	=10000=10000=0A Tunable Programming System
	-22pt
	Programming Interface
	Code Generation and Autotuning
	Computation Analysis
	Schedule Enumeration
	Schedule Construction and Rewriting
	Platform-specific Rewriting

	Policy Enumeration
	Optimization Parameter Inference.
	Search Space Generation

	Autotuning

	Translation to Target-Specific Code
	Targeting New Architectures
	Operator Fusion

	Benchmarks
	Reduction and Scan
	Sparse Matrix-Vector Multiplication (SpMV)
	K-Means Clustering
	Co-design Molecular Dynamics Proxy (CoMD)

	Evaluation
	Methodology and Hardware Platforms
	Training and Testing Inputs

	Performance Results
	Reduction and Scan
	SpMV
	K-Means
	CoMD
	Tuning and Overheads
	Summary

	Productivity Gains

	Summary

	=10000=10000=0Related Work
	-22pt
	Autotuning for Adaptive Programming
	Parameter and Domain-Specific Autotuning
	Code Variant Tuning
	Architecture-Adaptive Tuning
	Energy and Power Efficiency Tuning on GPUs

	High-Level Parallel Programming Systems
	Nested Data-Parallelism
	Decoupling Computation and Implementation
	Programming Models Supporting Autotuning

	Summary

	=10000=10000=0Conclusions and Future Research
	-22pt
	Contributions
	Future Work
	Support for Tunable Parameters
	Tuning Approximate Computations
	Extensions to Surge
	Operator Transformations
	Intercomputation Optimizations

	Summary

	REFERENCES

