Designing a Tunable Nested Data-Parallel Programming System

SAURAV MURALIDHARAN, University of Utah
MICHAEL GARLAND and ALBERT SIDELNIK, NVIDIA Corporation
MARY HALL, University of Utah

This article describes Surge, a nested data-parallel programming system designed to simplify the porting
and tuning of parallel applications to multiple target architectures. Surge decouples high-level specification
of computations, expressed using a C++ programming interface, from low-level implementation details using
two first-class constructs: schedules and policies. Schedules describe the valid ways in which data-parallel
operators may be implemented, while policies encapsulate a set of parameters that govern platform-specific
code generation. These two mechanisms are used to implement a code generation system that analyzes
computations and automatically generates a search space of valid platform-specific implementations. An
input and architecture-adaptive autotuning system then explores this search space to find optimized imple-
mentations. We express in Surge five real-world benchmarks from domains such as machine learning and
sparse linear algebra and from the high-level specifications, Surge automatically generates CPU and GPU
implementations that perform on par with or better than manually optimized versions.

CCS Concepts: ® Software and its engineering — Software performance; Parallel programming
languages;

Additional Key Words and Phrases: Nested data parallelism, autotuning, performance portability

ACM Reference Format:

Saurav Muralidharan, Michael Garland, Albert Sidelnik, and Mary Hall. 2016. Designing a tunable nested
data-parallel programming system. ACM Trans. Archit. Code Optim. 13, 4, Article 47 (December 2016), 24
pages.

DOI: http://dx.doi.org/10.1145/3012011

1. INTRODUCTION

Parallel architectures are becoming increasingly diverse. With high-performance code
being commonly customized to specific low-level architectural features, the cost of de-
veloping and maintaining performance-portable applications is also getting higher. In
this article, we introduce a new programming system, named Surge, which supports
decoupling the high-level specification of computations from their implementation de-
tails using first class constructs. This separation enables Surge to easily generate a
search space of multiple low-level, architecture-specific implementations from the same
specification. Expert users or automatic performance tuning systems (autotuners) are

This is a new article, not an extension of a conference article.

This research was funded by DARPA contract HR0011-13-3-0001. This research was funded in part by the
U.S. Government. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.
Authors’ addresses: S. Muralidharan, M. Garland, and A. Sidelnik, NVIDIA Corporation, 2701 San Tomas
Expressway, Santa Clara, CA 95050; emails: {sauravm, mgarland, asidelnik}@nvidia.com; M. Hall, School of
Computing, University of Utah, 201 Presidents Circle Rm 201, Salt Lake City, UT 84112; email: mhall@cs.
utah.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1544-3566/2016/12-ART47 $15.00

DOI: http://dx.doi.org/10.1145/3012011

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

http://dx.doi.org/10.1145/3012011
http://dx.doi.org/10.1145/3012011

47:2 S. Muralidharan et al.

then able to navigate this search space to find the best implementation for a given
execution context (architecture and input dataset).

Surge consists of a programming interface, implemented purely as a C++ library,
and separate code generation and autotuning subsystems. The programming interface
is based on nested data parallelism, which is a generalization of flat data parallelism;
in nested data parallelism, subcomputations of a data-parallel computation may them-
selves be data-parallel [Blelloch 1992]. It is a powerful abstraction for expressing a
variety of parallel computations; further, the algorithmic hierarchy in nested data-
parallelism maps naturally to modern processors, many of which have hierarchically
organized execution and storage resources (such as GPUs).

The separation between nested data-parallel specification and implementation is
achieved using two constructs in the programming interface: schedules and policies.
These represent different levels of abstraction with respect to code generation: Sched-
ules characterize the dependence structure of data-parallel operators, independent of
hardware-specific details, while policies encapsulate a set of optimization parameters
that govern low-level code generation on various hardware platforms. This two-level
design makes targeting new platforms easier and provides a systematic way of auto-
matically generating a search space of valid implementations, which we then navigate
using an autotuner. The resulting system is easy to use for application developers
but still provides performance that is on par with or better than manually optimized
implementations for a variety of computations.

While there exist other nested data-parallel programming systems, most automat-
ically employ flattening and then rely on flat data-parallel mappings [Blelloch 1992;
Chakravarty et al. 2007; Bergstrom et al. 2013]. Copperhead [Catanzaro et al. 2011]
and CuNesl [Zhang and Mueller 2012] provide architecture-specific mapping of nested
data parallelism to the hierarchical structure of GPUs, but this mapping is embedded
in their compiler implementations and not exposed to autotuning. The concept of sepa-
rating specification and implementation has appeared in flat data-parallel models [Bell
and Hoberock 2011; Jones and Singh 2009] and in systems that target specific domains
such as image processing [Ragan-Kelley et al. 2013] and graph workloads [Prountzos
et al. 2012]. In addition, recent work has explored the integration of autotuning into
parallel programming systems [Chang et al. 2016; Steuwer et al. 2015]. In contrast,
Surge uniquely offers the generality and ease-of-use of a nested data-parallel system
and the portability of separating implementation and autotuning.

This article makes the following contributions:

—Describes a new nested data-parallel programming interface, implemented as a C++
library, that decouples high-level specification of computations from low-level imple-
mentation details using two constructs: schedules and policies.

—Introduces techniques to automatically analyze nested data-parallel specifications
and generate a search space of valid low-level platform-specific code using schedules
and policies. Autotuning then selects the best implementation for the execution
context.

—Demonstrates Surge is capable of achieving performance on par with or better than
manually optimized CUDA and OpenMP implementations across five benchmark
applications.

2. PROGRAMMING INTERFACE

Surge exposes a nested data-parallel programming interface, implemented as a C++
library. Programs written using this interface can be compiled to platform-specific code
using a standard C++11 compiler. Table I lists the currently supported data-parallel
operators, and Listing 1 shows an example of how they may be used to express sparse
matrix-vector multiplication (SpMV). A basic sequence type, denoting a view over

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System

47:3

Table I. Current Data-Parallel Operators in Surge. Parameters in Square Brackets Are Optional

Operator

Description

map(f, s1,..., Sp)

Produces sequence (£ (s1[0], ..., s,[0]1), £(s1[1],..., sp[11),...)

reduce(®, s, p)

Produces the result (p @ s[0] @ s[1] @ ...) for a commutative and
associative operator @©

reduce_by_key(®, s,
k, p)

Performs segmented reduction of sequence s with key sequence k. Prefix p
represents the initial value of reduction.

scan(f, s, p)

Produces sequence y s.t. y[0] = pandy[i] = f(y[i-1],s[i-1]) for
associative operator £

gather(s, idx)

Produces sequence y s.t. y[i] = s[idx[i]]

scatter(s, idx, d)

Updates sequence d s.t. d[idx[i]] = s[i]

range(s, e, [stridel)

Produces sequence with values ranging from s to e with stride stride

replicate(v, len)

Synthesizes sequence s of length len s.t. s[i] = vforall i

zip(sy1,...,8,)

Produces sequence x s.t. x[0]1=(s; [0], ..., s,[0]), x[1]1=(s1[1], ...,
sp[1]), ...

split(s, 1)

Produces nested sequence x from s s.t. each sub-sequence of x is a tile of s of
size 1

cyclic(s, 1)

Produces nested sequence x from s s.t. x is the transpose of nested sequence
created by split(s, 1)

join(sy, ..., sp)

Produces sequence ({(x1, ..., x,)i) s.t. x] € s1, X2 € s9,... &

i € [0, T len(s)

striding(s, stride)

Produces strided sequence from s of stride stride

reverse (s)

Produces the reversed sequence of s

nest(s, i)

Produces a nested sequence from s with subsequence offsets i

O 0030 Utk WN =

// Create nested sequences s_matrix and s_indices

auto s_matrix = nest(s_nonzeros, s_row_offsets);

auto s_indices = nest(s_column_indices, s_row_offsets);
using row_t = decltype(s_matrix[0]);

using index_row_t = decltype(s_indices[0]);

auto spmv =
// Apply dot product across all rows of matrix
map([=] (row_t row, index_row_t indices) {

auto mul = []J(value_t x, value_t y) { return xxy; };
auto plus = [](value_t x, value_t y) { return x+y; };
// Gather elements from vector s_vector
auto z = gather(s_vector, indices);
// Element-wise multiplication of vector with row
auto vector_mul = map(mul, row, z);
// Sum up elements to obtain dot product
return reduce(plus, vector_mul, value_t(0));

H

s_matrix, s_indices);

21 // Realize SpMV computation
22 execute(spmv, s_result);

Listing 1.

Surge code for Sparse Matrix-Vector Multiplication (SpMV). See the Appendix for the full code

listing and Section 5.2 for a more detailed description.

contiguous one-dimensional data, is also provided. More complex types of sequences
can be built up using operators such as nest, as described in Table I. In Listing 1, for ex-
ample, s_matrix and s_indices are nested sequences (represented internally using the
compressed sparse row (CSR) matrix format) constructed from the flat one-dimensional
sequences s_nonzeros and s_column_indices, respectively, and the same row offset
sequence s_row_offsets; each element of s_matrix and s_indices thus represents a
single row of nonzeros and corresponding column indices of the original matrix.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:4 S. Muralidharan et al.

For each computation in the program, Surge builds an expression sequence to capture
the nesting structure of its data-parallel operators. Each element of an expression
sequence E is a single data-parallel operator, and, given two elements e and f in E,
f follows e in the sequence (represented as e >) only if the operator corresponding
to f is nested within that of e in the computation. In the SpMV example (Listing 1),
the outermost map (line 9) iterates over matrix rows, and the reduce operator on line
17 operates on these rows and is nested within the map. The corresponding expression
sequence is therefore map>reduce. Note that the gather and map on lines 13 and 15,
respectively, are not part of the nesting structure; instead they are arguments to reduce
and are fused into it as explained in Section 4.

An expression sequence is an abstract entity and can be realized in hardware in
multiple ways. For example, on CUDA, two different implementations of the SpMV
expression sequence can be obtained by either assigning each iteration of the outer-
most map to a thread or to a logical CUDA warp (power-of-two contiguous group of
threads that are at most the physical warp size); the former corresponds to the CSR-
Scalar implementation and the latter to CSR-Vector, as described in Bell and Garland
[2009]. To bind an expression sequence to a concrete hardware implementation, Surge
introduces two new constructs in the interface: schedules and policies. A schedule,
when associated with a data-parallel operator, characterizes the dependence struc-
ture of that operator, constraining the ways in which it may be implemented; these
constraints can then be systematically relaxed to obtain platform-independent imple-
mentation strategies. Policies, on the other hand, provide fine-grained control over
low-level, platform-specific implementation details by encapsulating the parameters
that drive code generation. By exposing schedules and policies in the programming
interface, as opposed to embedding them deep in the code generation infrastructure,
both autotuners and expert programmers are able to easily experiment with multiple
implementations for a computation. We describe schedules and policies in more detail
in Section 3.

For performance-portable code generation, we believe that decoupling computations
from their implementations alone is not enough: It is equally important to be able
to reason about implementation strategies for computations in a purely platform-
independent manner; targeting a new platform then reduces to the problem of finding
ways to customize these strategies for that platform. Surge achieves this by keeping
the concepts of schedule and policy separate. In contrast, a system that generates
platform-specific implementations directly from high-level specifications (regardless
of whether they are decoupled or not) must re-implement its entire code generation
infrastructure for each new platform.

Invoking the execute function initiates the process of binding the expression se-
quence to a concrete implementation. It has the following form:

execute(expr, [destination, platform, schedule, policy])

Here expr is the nested data-parallel computation, and the optional destination argu-
ment specifies where to copy the results of the computation. The platform argument is
used to specify the target hardware platform. Surge currently supports two platforms:
GPUs and x86 CPUs through CUDA C++ and OpenMP, respectively. If this argument
is left unspecified, it defaults to CUDA C++. Schedules and policies may be specified
through the schedule and policy parameters, respectively; in this article, they are
inferred automatically via autotuning (as described in Section 3). The values of the pa-
rameters platform, schedule, and policy determine a unique implementation for the
computation in expr. Once specified, expr is automatically compiled to either CUDA
C++ or OpenMP code using static meta-programming (described in Section 4) and a
standard C++ compiler.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 475

| Surge Computation |

ANALYZER
Expression Tree | Platform !7
J

| SCHEDULE GENERATOR |
S

1
1
I'l Schedules Implementations

!

POLICY GENERATOR |
¥

[

Fig. 1. Overview of the Surge code generator.

Table II. List of Surge Schedules

Schedule Description

independent | Permits the use of multiple execution resources working in parallel

cooperative | Permits multiple resources, but they may additionally coordinate with each other
sequential | Permits the use of a single thread

3. CODE GENERATION AND AUTOTUNING

The Surge code generator analyzes nested data-parallel computations in the program
and for each one, systematically enumerates the set of semantically valid schedules
and policies. The code generator is implemented as a set of Python modules. Figure 1
provides an overview of the code generation process.

3.1. Computation Analysis

The job of the analyzer is to extract the expression sequence and platform informa-
tion for each computation in the program. We avoid using a full-fledged C++ parser
for this and instead rely on a lightweight introspection mechanism. The analyzer
recompiles the input program with the macro INTROSPECTION_MODE defined; this in-
structs Surge to pretty-print the expression sequence and platform information of the
computation instead of evaluating it. The resulting program is run and its output is
parsed by the analyzer. As a concrete example, see Listing 8 in the Appendix; here, the
INTROSPECTION_MODE macro is automatically defined in the surge_config.h file (line 15)
and is included before the execute.h header (line 19), thus enabling it to change the
behavior of the execute function. Since expression sequence elements are encoded as
templated types (as described in Section 4), static meta-programming is used to recur-
sively traverse the expression sequence and print out its information. This is similar
to the approach in VexCL for implementing its symbolic type [Demidov et al. 2016].

3.2. Schedule Enumeration

Schedules are defined in terms of execution resources, which are platform-specific units
capable of carrying out a data-parallel operation. Examples of execution resources in-
clude threads, CUDA warps, OpenMP thread-pools, and so on. Surge currently supports
three schedules: independent, cooperative, and sequential (Table II). Schedules are
nested to correspond with the nesting structure of the associated expression sequence.
For the SpMV code, an example valid schedule is independentscooperative: The

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:6 S. Muralidharan et al.

Table Il. Schedule Lookup Table for Surge Operators

Operator(s) Strongest Schedule
map, gather, scatter, range, replicate, zip, join, striding, independent
reverse
split, cyclic, nest independentrindependent
reduce, reduce_by_key, scan cooperative
mapkreduce < thread
0
Schedule .
Construction < thread, g| grid,
N . <— thread,
l independenthcooperative ‘
independentPsequential sequentialPcooperative
Rewrite Rewrite
sequentialpcooperative ‘ l independentksequential
<— blockgy/warp,
<— block,/warp;, thread,
Rewrite Rewrite
<— block,/warp,
sequentialrsequential independentPcooperative sequentialPsequential
(a) (b)

Fig. 2. (a) SpMV schedule construction and rewriting and (b) how various SpMV schedules may be im-
plemented in CUDA; in this example, the input matrix (gray boxes) has 12 nonzeros (blue boxes) and
3 rows.

outermost map can process its elements independently, whereas the inner reduce (vector
dot product) requires a cooperation stage among threads if implemented in parallel.

Schedule enumeration refers to the process of discovering the set of valid schedules
for a given expression sequence and platform. It consists of two phases: (1) schedule
construction and rewriting and (2) platform-specific pruning. Before describing sched-
ule enumeration, we first introduce the schedule rewrite rules, which make it possible
to transform one schedule to another in a well-defined manner:

independent — sequential

cooperative — sequential.

We define the strength binary relation over the set of schedules as follows: A schedule
s1 1s said to be stronger than schedule s iff so can be obtained from s; by following the
rewrite rules in Surge. Operators implemented using a schedule s can always be imple-
mented using any schedule weaker than s. For example, a map operator, implemented
using the independent schedule, can always also be implemented using the weaker
sequential schedule. On nested schedules, rewrite rules are applied one at a time on
individual elements.

Schedule Construction and Rewriting. The first step of schedule enumeration is
inferring the strongest nested schedule for the given expression sequence—this is the
schedule construction phase. Elements of the input expression sequence are traversed
in order, and a schedule lookup table (shown in Table III) is consulted to obtain the
corresponding element in the strongest schedule’s sequence.! The strongest obtained
schedule is then systematically rewritten to obtain the set of all its weaker schedules.
Figure 2(a) depicts schedule construction and rewriting for the SpMV example from
Listing 1, and Figure 2(b) visualizes how the generated schedules may be implemented
on the CUDA platform.

INote: nonassociativity of floating-point operations is not considered during this mapping.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 477

Table IV. List of Tunable Parameters

Parameter(s) Type Platform
block_size_x, block_size_y, logical_warp_size Global CUDA
grain_size, block_reduce_algo, block_scan_algo, Local CUDA
block_scan_grain_size

num_threads, enable_nesting Global OpenMP
omp_schedule, chunk_size Local OpenMP
execution_resource, enable_unroll Local CUDA/OpenMP

Platform-Specific Pruning. While generated schedules are guaranteed to be seman-
tically valid, they may not always be directly implementable on the given platform.
For example, since CUDA only supports two levels of parallelism on a single GPU (at
the thread block or warp level and at the thread level), any schedule after nesting
level 2 must be sequential. Surge thus defines a set of schedule constraints for each
platform, and any schedules that violate one or more of these constraints are removed
from further consideration.

3.3. Policy Enumeration

A policy for an expression sequence E consists of a set of global and local parameters;
the former affect the implementation of the entire computation, while the latter that of
the associated element of E. An example of a global parameter is warp_size in CUDA,
which specifies the number of threads in a logical CUDA warp, while that of a local
parameter is omp_schedule, which specifies the OpenMP loop schedule to use. Table IV
lists the parameters currently supported by Surge.

As shown in Figure 1, the final stage of the code generation process is policy enu-
meration. Let S be the set of valid schedules produced for expression sequence E and
platform B. The policy enumerator, for each s € S, generates a set of platform-specific
optimization parameter values that dictates how the tuple (E, B, s) is implemented in
hardware. We now describe the two phases of policy enumeration: optimization param-
eter inference and search space generation.

Optimization Parameter Inference. The set of valid optimization parameters T is
given by:

T = U (G(g,B,s) U Get-Parameters(E, B, s)),
seS

where G is the set of global parameters, and Get-Parameters (shown in Algorithm 1)
is a function that returns the set of valid local parameters for each (E, B, s) tuple. The
inferred parameters for the schedules in the SpMV example (see Figure 2(a)) are shown
in Table V.

ALGORITHM 1: Parameter Inference

1: function GET-PARAMETERS(E, B, s)

2: #E: Expression sequence of form 015095 - - - >0,>¢
#s: Schedule sequence of form si>son - - - >s,>¢
#B: Platform
if £ = ¢ then return ()
else

t < parameter-set[0j, s1, Bl
E’ < 09>03> - - - >0,>¢
S’ < So>S3> - - >S,>¢
10: return t U GET-PARAMETERS(E’, B, s’)

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:8

S. Muralidharan et al.

Table V. Inferred Parameters for each SpMV Schedule. The Subscripts Denote Nesting Depths

Schedule

Inferred Parameters (CUDA)

Inferred Parameters
(OpenMP)

independentrcooperative

block_size_x,
block_size_y,
logical_warp_size,
grain_size;,
block_reduce_algog

num_threads, enable_nesting,
omp_scheduley, chunk_sizeq,
omp_scheduleg, chunk_sizeg

independentrsequential

block_size_x,
block_size_y,
logical_warp_size,
grain_size;,
enable_unrolly

num_threads, enable_nesting,
omp_schedulej, chunk_sizej,
enable_unrolly

sequentialrcooperative

block_size_x, block_size_y,
logical_warp_size,
block_reduce_algog

num_threads, enable_nesting,
omp_scheduleg, chunk_sizeg,
enable_unrollg

sequentialrsequential

block_size_x, block_size_y,
logical_warp_size,

enable_unrollj, num_threads,
enable_nesting, enable_unrolly

enable_unrollj, enable_unrolly

Surge Program

Training Inputs

.

1
| CODE GENERATOR }—&u sl H AUTOTUNER }—»{ Model

Tuning Phase (Offline)

|_,{

Fig. 3. Overview of the Surge framework and its interaction with the autotuner.

| Input Running Program H Tuned Implementation |

Search Space Generation. Each parameter ¢ € T can take on a set of values. If r
is a function that takes a parameter as input and outputs the list of its valid values,
then the search space is [[,.p 7(¢), where [| denotes a Cartesian product. However,
since not all points in this space may be valid on the given platform, search space
generation is followed by a pruning phase that discards points that violate platform-
specific constraints. For example, while the maximum dimension size of a CUDA thread
block along the x- and y-axes is 1,024 each, the total number of threads per block
(product of x- and y-axis dimensions) is also restricted to 1,024 on current GPUs such
as the NVIDIA Tesla K20c.

3.4. Autotuning

The code generation approach from the previous section produces a search space of
functionally equivalent implementations (called code variants) for each computation.
To automate the selection of which version is most appropriate for a given execu-
tion context, we rely on autotuning. The Surge framework and its interaction with
the autotuner is depicted in Figure 3. While autotuning is becoming widely used as
part of programming systems [Chang et al. 2016; Steuwer et al. 2015], a few search

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:9

frameworks can be used as stand-alone tools [Tiwari et al. 2009; Hartono et al. 2009;
Muralidharan et al. 2014; Ansel et al. 2014]. In this article, we use Nitro for code
variant selection [Muralidharan et al. 2014]. Nitro facilitates code variant selection
that fully adapts to execution context; it adapts to the architecture as well as the
input dataset. Since nested data parallelism specifically operates on multi-dimensional
(nested) data, having the ability to adapt to input data characteristics is valuable.

The programmer provides a set of training inputs that are representative of input
datasets; synthetic inputs can be used for regular codes whose performance is only
dependent on problem size, but representative inputs are needed for irregular nested
data-parallel computations such as SpMV. For each training input, the autotuner builds
a feature vector that encodes the input’s characteristics and measures the performance
of each code variant in the search space to find the best-performing one. Surge infers
three features automatically by analyzing the structure of the first input sequence
used by the computation: (1) length of the input sequence, (2) aspect ratio for uni-
formly nested sequences, and (3) average row length for irregularly nested sequences
(obtained through the nest operator, for example). Nitro builds a Support Vector Ma-
chine (SVM) [Vapnik 1998] model in this offline training phase (Figure 3 (top)) and
stores it as a text file on disk. The model maps from features of the input dataset
to code variants and is automatically loaded and consulted at application runtime to
select an optimal variant for the given input (Figure 3 (bottom)).

4. TRANSLATION TO TARGET-SPECIFIC CODE

The Surge programming interface is a domain-specific embedded language [Hudak
1996] with C++ as the host. The primary entities in the programming interface, namely
operators, schedules, policies, and platforms, are all implemented as types to enable
static meta-programming. In particular, Surge overloads operators to act as type con-
structors, as in the expression template idiom [Veldhuizen 1995], to construct the
expression sequence at compile time. This enables the hardware realization of opera-
tors to be deferred until an appropriate implementation context (platform, schedule,
and policy) is available. As a concrete example, consider map: It is recorded as the
type transformed_sequence<F, Sj, Sg,...>, where F is the function being applied
to every element of sequences S;. Since a map’s iterations can be executed indepen-
dently, transformed_sequence correspondingly provides the subscript operator to re-
alize each individual iteration independently. Thus, in Listing 1, the spmv variable on
line 7 is a transformed_sequence, and spmv[0] calls the lambda function defined on
line 9 with arguments (s_matrix[0], s_indices[0]); this returns an object of type
reduced_sequence, corresponding to the reduce operator on line 17.

With the expression sequence constructed, a set of nested computation kernels, de-
fined for each platform, is used to realize computations. Each kernel implements a set
of (E, B, S, P) tuples, where E is the expression sequence, B is the platform, S is the
schedule, and P is the policy. Representing schedules and policies as separate types
enables us to utilize the C++ substitution failure is not an error (SFINAE) idiom and
function overloading to define both generic and highly specialized computation kernels
conveniently. For example, Listing 2 shows a simple kernel that realizes any valid oper-
ator bound with the independent schedule on CUDA. In contrast, the type signature of
a kernel specialized for the tuple (reduce_by_key>_, CUDA, cooperativerindependent,
_) is as follows:

template<typename S, typename D, typename Policy>
__global__ void nested_kernel(S src, D dest,
cooperative<independent<>>, Policy,
mpl::enable_if_t<mpl::sequence_traits::
is_seg_reduced<S>::value>x = 0);

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:10 S. Muralidharan et al.

1 // Implements tuple <_, CUDA, independent, _>

2 template<typename S, typename D, typename Policy>
3 __global__ void nested_kernel(S src, D dest,

4 independent<>, Policy) {

5 using iteration_type =

6 typename S::template iteration_type<

7 D, platform::cuda, res::cuda::thread,

8 mpl::global_policy_t<Policy>,

9 mpl::sub_policy_t<Policy, 1>>;

10

11 const int idx = blockIdx.x*blockDim.x+threadIdx.x;
12 const int grid_size = gridDim.xxblockDim.x;

13

14 iteration_type iterator(src, dest);

15 for(int i = idx; i < src.size(); i += grid_size)
16 iterator[i];

17 iterator.finalize();

18 3}

Listing 2. Sample CUDA nested computation kernel for the independent schedule.

and for the tuple (_, CUDA, independent>cooperative, (execution_resource=cuda_
warp, ---))is as follows:
template<typename S, typename D, typename Policy>
__global__ void nested_kernel(S src, D dest,
independent<cooperative<>>, Policy,
mpl::enable_if_t<std::is_same<typename
policy::sub_policy::execution_resource,
res::cuda::warp>::value>x = 0)

Targeting New Architectures. Implementing support for a new architecture involves
defining a new platform type, and corresponding tunable parameters and nested com-
putation kernels. As described above, the two-layered schedule+policy approach pro-
vides a great amount of flexibility while implementing new computation kernels: Pro-
grammers can start with fairly generic kernels and then specialize incrementally. This
separation also reduces the effort required to add automatic code generation support,
as every phase of the code generator need not be re-implemented; instead, only the
platform-specific schedule pruning and policy enumeration phases need to be imple-
mented for the new platform, as described in Section 3.

Note on Operator Fusion. Deferred realization permits operators to be fused together:
Consider the case when an operator O, is an argument to operator O,; for example,
in Listing 1, gather (on line 13) is an argument to map (line 15), which in turn is
an argument to reduce (line 17). If O, can be realized using independent iterations,
then Surge fuses each iteration of O, (producer) with that of O, (consumer) and thus
eliminates the need for temporary storage required to realize O,,.

5. BENCHMARKS

We express five benchmark applications in Surge and evaluate their performance on
both multi-core CPUs and GPUs. To better model a range of real-world applications, the
benchmarks are of varying complexity and are drawn from diverse domains such as lin-
ear algebra, machine learning, and physical simulation. Table VI lists our benchmarks,
together with the nested operators used and details about the reference implementa-
tions. The remainder of this section describes each benchmark in detail.

5.1. Reduction and Scan

For our first set of benchmarks, we implement parallel reduction and parallel prefix
scan (scan for short) in Surge. Reduction and scan are fundamental parallel computing

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:11

Table VI. List of Benchmarks with Description, Their Core Computation(s) and Details
about Reference Implementations

Reference
Benchmark Description Core Computation(s) Implementation
Reduction Parallel reduction map>reduce Thrust 1.8.2 [Bell and
Hoberock 2011]
Scan Parallel prefix scan map>scan, map>reduce Thrust 1.8.2 [Bell and
Hoberock 2011]
SpMV Sparse matrix-vector map>reduce GPU: CUSP 0.5.1 [Dalton
multiplication et al. 2010], CPU: MKL
11.2 [Intel 2016]
K-Means K-Means clustering using reduce_by_key>map, Catanzaro [Catanzaro
LLoyd’s algorithm [Lloyd map>reduce 2014]
1982]
CoMD Co-design molecular map>reduce, map ExMatEx CoMD
dynamics proxy application 1.1 [ExMatEx 2015;
Sakharnykh 2013]

primitives that are widely used as building blocks for more complex algorithms [Merrill

2011]. Given a sequence of input elements xg, x1, x2, ..., Xy, a prefix element p, and a
binary operator @, the output of a reduction is the scalarvaluex = p® xo D x1 D - - -Dxy
while that of prefix scan is the sequence yjg, y1, ¥2, ..., yn, Wwhere yo = p and each

Yi = Yi-1 D Xi-1.

In the Surge implementation (Listings 3 and 4), the input sequence is first split into
evenly sized tiles that are reduced or scanned in parallel to yield a set of partial results
(or partials). These are processed to obtain the final result of the reduction or scan. For
the computation of partials, the in-built reduce and scan operators are instantiated
within a map, yielding a nested data-parallel algorithm.

5.2. Sparse Matrix-Vector Multiplication

SpMV is a critical operation that is used in many iterative methods for solving large-
scale linear systems. For this benchmark, we implement the SpMV computation in
Surge, as shown in Listing 1. The sparse matrix and column indices (s_matrix and
s_indices on line 19) are represented as nested sequences, which are internally stored
in a CSR analogue. The outermost map (line 9) processes each row of the matrix. Inside
the body of the lambda that processes a single row, the correct elements of the vector are
first gathered (line 13), multiplied on an element-wise basis with the current matrix
row (line 15), and, finally, summed up to yield the dot product of that row (line 17). Note
that the gather and map on lines 13 and 15 are automatically fused into the reduce on
line 17, eliminating temporaries (see Section 4 for a description of operator fusion).

5.3. k-Means Clustering

k-Means clustering is an important algorithm commonly used in fields such as computer
vision and signal processing. The problem is defined as follows: given a set of N data
points in D-dimensional space R”, and an integer %, determine a set of % points in
RP| called centroids, to minimize the mean-squared distance from each data point to
its nearest centroid. We implement a popular heuristic for 2-means clustering called
Lloyd’s algorithm [Lloyd 1982]. Additionally, we use the strategy outlined by Catanzaro
[Catanzaro 2014] and rewrite the distance computation ||x —y||?asx-x+y -y —2-x -7,
where x denotes a point and y a centroid. This refactorization lifts the x - x computation
out of the main k-means loop and enables the use of vendor-optimized GEMM library
calls to efficiently compute x - y.

Given an initial set of £ means, Lloyd’s algorithm proceeds by alternating between
two steps: (1) relabeling, which is assigning each point to the cluster with the nearest

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:12 S. Muralidharan et al.

1 auto plus =

2 [1 (value_t a, value_t b) { return a + b; };

3

4 // Split original flat sequence (s) into C tiles

5 auto s_tiled = split(s, tile_size);

6

7 using row_t = decltype(s_tiled[0]);

8 auto row_reduce =

9 [=] (row_t row) { return reduce(plus, row, value_t(0)); };
10

11 // Compute per-tile reductions
12 execute(map(row_reduce, s_tiled), s_partials);

14 // Reduce partials into s_result[0]
15 auto s_partials_tiled = split(s_partials, C);
16 execute(map(row_reduce, s_partials_tiled), s_result);

Listing 3. Surge code for parallel reduction.

1 auto plus =

2 [1 (value_t a, value_t b) { return a + b; };
3

4 // Split original flat sequence (s) into C tiles
5 auto s_tiled = split(s, tile_size);

6 using row_t = decltype(s_tiled[0]);

7

8 // Compute per-tile reductions

9 execute(

10 map([=] (row_t tile) {

11 return reduce(plus, tile, value_t(0));
12 }, s_tiled),

13 s_partial_reductions);

14

15 // Prefix sum over partial reductions
16 auto s_partials_tiled = split(s_partial_reductions, C)
17 execute(

18 map([=] (row_t tile) {

19 return scan(plus, tile, value_t(0));
20 }, s_partials_tiled),

21 s_partial_scans);

23 // Compute full prefix sum by seeding from reduction
24 execute(

25 map([=] (row_t tile, T prefix) {

26 return scan(plus, tile, prefix);

27 }, s_tiled, s_partial_scans[0]),

28 s_result);

Listing. 4. Surge code for parallel prefix scan.

centroid, where the distance between points is the Euclidean distance, and (2) centroid
recalculation, which is calculating the new cluster centroids as the mean of the values
of points in the new clusters. While the Surge 2-means implementation consists of five
computations, we focus on the more expensive centroid recalculation step, the code for
which is shown in Listing 5. Here the centroids and data points are stored as tiled
sequences (with tile size D) and are obtained by applying a split on flat 1D sequences
stored in row-major format (s_centroids_flat and s_points_flat). Each element of
s_labels, say, s_labels[i], initially contains the label (index) of the closest centroid
for data point i. We sort s_labels to bring all labels of the same centroid together
and store the corresponding point indices in s_indices (which initially holds range (0,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:13

1 // Use a tiled sequence for centroids and points.
2 auto s_centroids = split(s_centroids_flat, d);
3 auto s_points = split(s_data_flat, d);
4
5 // Bring all labels with the same value together
6 thrust::sort_by_key(s_labels.begin(), s_labels.end(), s_indices.begin());
7
8 auto s_points_x = gather(s_points, s_indices);
9 auto s_prefix = replicate(0, d);

10

11 using point_t = decltype(s_points_x[0]);

12

13 auto plus =

14 [1 (value_t a, value_t b) { return a + b; };

16 execute(

17 reduce_by_key([=] (point_t x, point_t y) {

18 return map(plus, x, y);

19 }, s_points_x, s_labels, s_prefix),
20 s_centroids);

Listing 5. Surge code for k-means centroid recalculation.

N —1)). The sum of the points belonging to each centroid can now be obtained through
a segmented reduction of s_points (permuted through s_indices) with key s_labels.
Since each point is itself in D-dimensional space, we use reduce_by_keysmap (line 17)
to accomplish this. A simple scaling step (not shown in the Listing) then divides the
resulting points by their correct counts to obtain the new set of centroids.

5.4. Co-Design Molecular Dynamics Proxy

Co-design Molecular Dynamics Proxy (CoMD) is a molecular dynamics proxy applica-
tion that is part of the ExMatEx project [ExMatEx 2015]. The workloads seen in the
reference CoMD application are representative of those in classical molecular dynamics
applications, which is to identify all pairs of atoms under a radius cutoff and compute
the force between these pairs. While the reference implementation supports methods
of computing Lennard-Jones and Embedded Atom Method (EAM) potentials, we only
consider the EAM potential method in this article.

For this benchmark, we express two algorithms for the EAM potential method for
computing inter-atom forces in Surge. One computes the forces directly (Listing 6),
while the other performs a domain-specific redistribution of atoms to expose more
parallelism before computing the forces (Listing 7). The direct method splits the input
atom space into evenly sized tiles and computes partial energy values for each tile.
The partials are then reduced to obtain the final energy value. In the redistributed
version (Listing 7), the map on line 8 applies the eam_force_functor, which updates a
given atom’s force, energy, and position, to each atom. Note that both algorithms are
expressed in a platform-neutral way and are targetable on both hardware platforms. To
enable selection between these two algorithms, we specify them as algorithmic variants
using Nitro. We thus obtain a two-level selection process where the algorithm is first
selected, followed by the implementation of that algorithm for the target platform.

6. EVALUATION

In this section, we demonstrate performance and productivity results for the five bench-
marks described in Section 5. For each benchmark, both CPU and GPU implementa-
tions are automatically generated, and the performances of the best ones for each
platform (found through autotuning) are compared against handwritten reference im-
plementations for that platform.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:14 S. Muralidharan et al.

1 auto s_space = split(s_boxes, tile_size);
2 auto s_count_range = range(0, s_space.size());

using tile_t = decltype(s_space[0]);

3
4
5
6 // Compute partial reductions into s_result
7
8

execute(
map([=] (tile_t tile) {
9 real_t etot = 0.;
10
11 // Loop over neighboring atoms,
12 // update force and compute energy.
13
14
15 return etot;
16 }, s_space, s_count_range),
17 s_result);
18
19 // Reduce partials
20 real_t etot = thrust::reduce(s_result.begin(), s_result.end());

Listing 6. Surge code for CoMD inter-atom force calculation (direct version).

auto s_domain = range(0, atoms_list.n);

// eam_force_functor updates the
// given atom’s force, energy and position.
eam_force_functor f(sim, atoms_list);

// In-place execute
execute(map(f, s_domain));

O =IO ULk LN -

Listing 7. Surge code for CoMD inter-atom force calculation (redistributed version).

6.1. Methodology and Hardware Platforms

Our evaluation was run on two hardware platforms: (1) a dual-socket, 32-core In-
tel Xeon E5-2698 v3 CPU (Haswell) running at 2.30GHz and (2) an NVIDIA Tesla
K20c GPU (Kepler generation). The NVIDIA CUDA compiler (NVCC) 8.0RC was
used, and g++-4.8.2 with OpenMP 3.1 was used as the host (CPU) compiler. The
-03 flag was specified. For the Intel Math Kernel Library (MKL) results collection,
the Intel compiler v15.0 was used with the KMP_AFFINITY environment variable set to
granularity=fine,scatter. All implementations were run for 100 timing iterations
to collect consistent results. Unless otherwise specified, double precision floating-point
numbers were used in our evaluation.

Once the benchmarks were specified, Surge automatically generated valid implemen-
tations for the desired platform, tuned them, and produced the SVM models. Table VII
shows the tuning information for each benchmark, including the features inferred
automatically by Surge (as explained in Section 3.4), number of training and testing
inputs, and size of the search space (number of distinct implementations generated
by Surge). When Nitro builds its model in the offline training phase, it automatically
finds the best variant corresponding to each training input using exhaustive search;
the maximum number of such unique variants across all computations in a benchmark
is listed in the last two columns of Table VII. We observe that although the initial
search space is fairly large, the set of variants for a computation that perform well on
a given platform is relatively small.

Training and Testing Inputs. As mentioned in Section 3.4, the training inputs for
Nitro, due to their domain-specific nature, must be provided by the programmer. For

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:15

Table VII. Features Used, Number of Training and Test Inputs, Size of Search Space, and Number
of Variants for Each Benchmark

Benchmark Inferred Features #Inputs Search Space Size #Variants
#Training | #Testing GPU CPU GPU | CPU

Reduction #tiles, aspect_ratio GPU:8, 8 42 36 4 3
CPU:6

Scan #tiles, aspect_ratio GPU:7, 8 90 72 4 3
CPU:5

SpMV #rows, avg_rowlen GPU:10, 13 42 36 5 4
CPU:6

K-Means #elements, #tiles, GPU:5, 7 40 12 3 5
aspect_ratio CPU:7

CoMD #elements, #tiles, GPU:7, 7 48 60 4 3
aspect_ratio CPU:7

reduction, scan, k-means, and CoMD, we generated synthetic inputs for both training
and testing; for SpMV, we used sparse matrices from the UFL Sparse Matrix Collec-
tion [Davis 2011]. To obtain representative training sets, we start with a large pool
of inputs for each benchmark and use Nitro’s active learning heuristic [Muralidharan
et al. 2014] to automatically prune it down and obtain the final training set. The test
sets are mutually distinct from the training set. The third column of Table VII shows
the number of training and test inputs for each benchmark.

6.2. Performance Results

Figures 4 and 5 show performance results for our benchmarks on both hardware plat-
forms. In each graph, points on the x-axis represent different inputs from the test
set, while the y-axis shows performance in terms of throughput. For each benchmark,
we show the performance achieved by the reference and tuned implementations. Note
that the performance data shown for the tuned implementations include feature evalu-
ation and SVM model query time. We also include a comparison with the performance
achievable if the best implementation among all the generated ones were found via
exhaustive search for each test input (lines and bars labeled “Exhaustive”). The av-
erage speedups (over the test set) achieved by the tuned Surge implementation over
reference implementations are listed in the second and third columns of Table VIII.

Reduction and Scan. Figures 4(a) and 4(b) show the performance of reduction and
scan. The tuned version either matches or significantly outperforms the reference
implementations on both platforms for all test inputs. The performance is especially
good on the GPU for small input sizes, where a CUDA warp-based reduction or scan
is automatically selected. For scan on the CPU, it appears that Thrust internally uses
a sequential algorithm, resulting in considerably lower throughput compared to the
parallelized Surge version.

SpMV . Figure 4(c) shows the performance of the Surge SpMV code (shown in List-
ing 1). We compare against the CUSP CSR Vector and MKL CSR implementations
on the GPU and CPU, respectively. The ability to vary logical warp sizes proves to be
crucial to obtaining good performance on the GPU, as matrices with smaller average
row lengths perform best with smaller logical warp sizes. On matrices with relatively
large average row lengths (for example, rail4284), the preferred execution resource
on CUDA seems to be blocks, as opposed to warps. On the CPU, the tuned version
performs between 80.5% and 128.8% of highly tuned MKL code.

k-Means. For this benchmark, the dimension of each vector is set to 32 and the
number of clusters to 10. The algorithm is run for 100 iterations. The Surge ver-
sion of £-means uses a reduce_by_key>map operator at the core. On CUDA, the num-
ber and size (along both the x and y dimensions) of the CUDA blocks turn out to

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:16 S. Muralidharan et al.

Reduction Performance - CUDA Reduction Performance - OpenMP
018 T o 10
b rust & Surge Tuned _a o -
%16 Exhaustive n % e “Thrust #Surge Tuned r/‘
914 g Exhaustive
212 2.
& 10 -2
£ 8 E 4
26]
c 4 < | 3]
S S 2 S
m o m o 4 - - - - - T -
25k 100k 250k 500k 1M 5M 10M 25M
Input Size Input Size
(a)
Scan Performance - CUDA Scan Performance - OpenMP
6 4 -
o o
] +Thrust ®Surge Tuned @ “Thrust #Surge Tuned Exhaustive
=5 A ~ 3.5
° Exhaustive /U/J 3
£4 = | £ 3 /‘F
&3 e § 2.5 = B -
w3 w 2
s 2 §1s -
= = . f——o—. _
S1 S 4 —=—0
= =05 ¥
o o
0 T T 1 1] T T
25k 100k 250k 500k 1M 5M 10M 25M 25k 100k 250k 500k 1M 5M 10M 25M
Input Size Input Size
(b)
CSR SpMV Performance - CUDA CSR SpMV Performance - OpenMP
W CUSP M surge Tuned Exhaustive ng ' W MKL ® Surge Tuned Exhaustive
i = B

N
nn o

FP64 GFLOP/s
5 B

o wun

Input Matrix Input Matrix

(¢
Fig. 4. Reduction, Scan, and CSR SpMV Performance on CUDA and OpenMP.

be the most important parameters, and tuning them enables us to beat the refer-
ence implementation for larger input sizes. Figure 5(a) shows the results for this
benchmark.

CoMD. Figure 5(b) shows the performance numbers for CoMD. On the CPU, we see
that the direct approach, which uses map>reduce, works best, while the version that
performs redistribution does well on the GPU. On both platforms, the version selected
by Nitro performs on par with reference implementations.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:17

K-Means Performance - CUDA K-Means Performance - OpenMP
o 60 Q 10
350 - : ﬁ A “Reference #Surge Tuned
] & - 3z 8 T a7 Exhaustive
3 40 e et 56 ¥ .
530 = = E \
s ! |
220 A 2 ° -
g 1 a] “+Reference ®Surge Tuned g 2 _— " ==
210 Exhaustive =
s 0 50
= 25k 100k 250k 500k 1M 5M 10M = 25k 100k 250k 500k 1M 5M 10M
s . = .
Input Size Input Size
(a)
CoMD Performance - CUDA CoMD Performance - OpenMP
« 20 w 4.4
= e > g
g 15 o - g 4.2 / s S
§ 10 - = § 3.8 & "_’ _/
8 3.6 4 -
S O +Reference ®Surge Tuned = g 34 o VReferen.ce HSurge Tuned
£ Exhaustive gs'z Exhaustive
w o 3.
5 s
E 10k 25k 50k 100k 250k 500k 1M E 10k 25k 50k 100k 250k 500k 1M

Input Size Input Size

(b)
Fig. 5. k-Means and CoMD Performance on CUDA and OpenMP.

Tuning and Overheads. Comparing the performance of implementations tuned by
Surge with that of ones found via exhaustive search, we notice that the automatically
constructed SVM models predict the right implementation for the given test inputs in
almost all cases. This implies that the input features added by Surge are highly effective
at predicting good implementations. Also, since the inferred features can be computed
in constant time, and the number of variants is relatively small for all benchmarks, we
observed that the overhead of feature evaluation and SVM model query was negligible
(order of a few microseconds). Since applications may be drawn from various domains,
we do not claim that the inferred features will always be sufficient, or that the feature
evaluation and SVM model query times will always be this low; instead, we believe
that the inferred features, and the integration with Nitro in general, provide a good
starting point for tuning the implementations generated by Surge.

Summary. Overall, the tuned implementations generated by Surge achieve excellent
performance across the board and often beat the performance of the reference imple-
mentations. On the GPU, the ability to vary the execution resource, logical warp sizes,
and the number and size of blocks has the most effect on performance. On the CPU, tun-
ing has a less pronounced effect. This is partly because most of the benchmarks operate
on uniformly tiled sequences and hence perform well with the default OpenMP sched-
ule. The notable exception is SpMV, which operates on irregularly nested sequences.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:18 S. Muralidharan et al.

SpMV: Effect of Logical Warp Size SpMV: Effect of Block Size
fLWS=4 HLWS=8 HLWS=16 HLWS=32 “Tuned Block Size 64 M Block Size 128 Block Size 256

- %g | # Block Size 512 Block Size 1024 Tuned

~ 7

81

10 | 6

O '8

wg

2 5

[Q4 . -

0] - -
33 . .
g2 . =

o -

1 G o

& Input Matrix 0 e S
Tesla K20c GeForce GTX 480

Fig. 6. CSR SpMYV performance w.r.t. changing CUDA logical warp and block sizes.

However, as described by Ohshima et al. [2014], the OpenMP scheduling policy seems
to affect SpMV performance only when the number of nonzeros is extremely high.

6.3. Performance Variation Among Code Variants

In the previous subsection, we demonstrated how Surge was capable of achieving
performance that is on par with handwritten implementations. To better understand
the role that autotuning plays in achieving this performance, we now analyze the
relative performance of code variants with respect to different input datasets and target
architectures. We focus on the SpMV benchmark on the GPU for this experiment and
consider the independentrcooperative schedule implemented using CUDA warps. We
vary two parameters: logical warp size (LWS) and CUDA block size (logical _warp_size
and block_size_x in Table IV); the remaining parameters (shown in the first row of
Table V) are set to default values (grain_size and block_size_y to 1.)

Figure 6 (left) shows the effect of varying logical warp size with block size set to
128. Here, the x-axis represents matrices from the SpMV test set, and the y-axis
shows performance in terms of throughput. Each bar represents a different LWS,
and the bar labeled Tuned represents the autotuned version. As the graph shows, no
single LWS is best across the test set, and the best LWS for a matrix depends on
its average row length. Since the latter property is captured during autotuning (see
Section 3.4), the tuned version chooses the correct LWS value in the majority of cases,
with mispredictions typically resulting in the selection of the second-best LWS value.
The only costly misprediction is for the pwtk matrix, which we believe is due to the
model encountering a training matrix with similar nonzeros, but different average row
length. Compared to warp size, the optimal block size primarily depends on the target
architecture. Figure 6 (right) shows the effect of varying block size for the webbase-1M
matrix on two distinct architectures: an NVIDIA Tesla K20c and an NVIDIA GeForce
GTX 480. Here, the LWS is set to 4 (optimal value for this matrix) to ensure fair
comparison. As the graph shows, on the K20c, a block size of 128 is optimal; this
remains the case for the rest of the training set as well. However, on the GTX 480, the
optimal block size turns out to be 256. In summary, the relative performance of code
variants changes with different inputs and target architectures, and an autotuning
system that can dynamically select the best variant based on input and architectural
characteristics is essential for achieving optimal performance.

6.4. Productivity Gains

We provide a rough measure of productivity by counting the source lines of code re-
quired in Surge to express the core computations of our benchmarks (memory manage-
ment and other bookkeeping code is not included) and comparing it with the number of
lines required to express the same computation in the reference CUDA and OpenMP

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:19

Table VIII. Average Speedups over GPU and CPU Reference Implementations, and Source
Lines of Code (SLOC) Required for Surge, and GPU and CPU Reference Implementations.
SLOC for SpMV on the CPU Is Unknown as Intel MKL Is Closed-Source

Benchmark Speedup SLOC

GPU CPU Surge GPU CPU
Reduction 3.67 1.04 8 88 51
Scan 1.26 2.28 19 96 63
SpMV 1.17 0.93 9 55 unknown
K-Means 1.05 0.98 43 125 71
ColMD 1.01 0.95 71,78 91 74

implementations. In the absence of a superior metric, we believe this captures the con-
ciseness of Surge programs, while still maintaining readability. The last three columns
of Table VIII show this comparison.

7. RELATED WORK

Nested Data-Parallelism. A majority of existing nested data-parallel programming
models automatically employ the flattening transformation to convert nested data-
parallel operations into flat data-parallel operations [Blelloch 1992; Chakravarty et al.
2007; Bergstrom et al. 2013], which may not be always optimal (see, for example, Keller
et al. [2012]). This is especially true on architectures such as GPUs that expose a hi-
erarchical parallelism structure. The notable exceptions are Copperhead [Catanzaro
et al. 2011] and CuNesl [Zhang and Mueller 2012], which support compiling nested
data-parallel operations to match the hierarchical parallelism available in GPUs. This
mapping to hardware, however, is performed automatically by the CuNesl and Copper-
head compilers and, unlike Surge (which exposes schedules and policies as part of the
programming interface), no mechanism is exposed for experimentation with different
mapping and implementation strategies. Lee et al. [2014] describe a framework for
transforming nested data-parallel patterns encoded in a parametrized intermediate
representation (IR) to efficient GPU code. A compiler analyzes the IR, generates a
search space of possible implementations, and then prunes it before generating GPU-
specific code. Similarly, Brown et al. [2016] describe an IR named DMLL that can be
targeted from high-level parallel patterns (including nested data-parallel patterns).
A compiler framework performs transformations on the IR to target distributed het-
erogeneous architectures. Since Surge exposes a relatively higher-level programming
interface, such frameworks and IRs can potentially be targeted from Surge for more
powerful analysis and code generation.

Decoupling Computation and Implementation. Outside the realm of nested data-
parallel programming models, the concept of decoupling the specification of a computa-
tion from its implementation has been explored in the literature. Some flat data-parallel
models such as Haskell Parseq [Jones and Singh 2009] and Thrust [Bell and Hoberock
2011] support the use of constructs such as par and seq to guide the evaluation of
data-parallel operators. More recently, C++ extensions for parallelism [Hoberock 2016;
Hoberock et al. 2016; Kretz 2016; Edwards et al. 2016] propose the use of execution poli-
cies and executors to control the execution of flat data-parallel operators. The Haskell
REPA library [Keller et al. 2010] supports operators such as map and foldA11lP and
supports lazy evaluation on numeric arrays. The Galois system [Pingali et al. 2011]
adopts a worklist-based approach to enable parallelization of irregular computations
and supports the use of various decoupled runtime schedulers to process work items
in parallel. Declarative task-based programming models such as Concurrent Collec-
tions (CnC) [Budimli¢ et al. 2010] decouple the high-level program task-graph from its
hardware implementation. Computations at the task-level are then explicitly specified

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:20 S. Muralidharan et al.

using a number of different parallel programming models. Charm++ [Kale and Kr-
ishnan 1993] provides an asynchronous message-passing model to describe parallel
programs. Halide [Ragan-Kelley et al. 2013] and Elixir [Prountzos et al. 2012] are
domain-specific languages that enable users to decouple the specification of image pro-
cessing pipelines and graph workloads, respectively, from their implementations using
schedules. The design philosophy of systems such as Halide and Elixir is very simi-
lar to that of Surge; the actual definition of schedules, however, naturally differs. For
instance, in Halide, the scheduling representation spans the search space of trade-
offs among locality, parallelism, and redundant recomputation in stencil pipelines.
The Delite domain-specific language compiler framework [Brown et al. 2011] uses
Lightweight Modular Staging [Rompf and Odersky 2010] to build an intermediate rep-
resentation that can represent both parallel patterns and domain-specific constructs.
The Delite compiler then compiles parts of the IR to Scala, C++, or CUDA. Similarly,
the Lime [Auerbach et al. 2010] compiler generates Java code for the entire program,
plus OpenCL for GPUs and Verilog for FPGAs; the Liquid Metal Runtime [Auerbach
et al. 2012] then selects which compiled code to use. Systems such as OpenMP [Dagum
and Menon 1998] and OpenACC [NVIDIA et al. 2015] and loop transformation frame-
works provide directive-based approaches to parallelize sequential code. Our work, in
contrast, is specifically focused on nested data parallelism. Existing systems such as
the ones described above, however, need not be mutually exclusive with Surge. For
example, languages such as CnC define an entirely separate coordination language
within which the programmer describes the data-parallel computation. A combined
system can make use of Surge to provide the finer-grained data parallelism.

Programming Models Supporting Autotuning. Recent work has explored the inte-
gration of autotuning into parallel programming models. In Tangram [Chang et al.
2016], expert programmers specify a spectrum of codelets, and the Tangram compiler
composes them to generate new ones; the best codelet is then chosen through auto-
tuning. While both Surge and Tangram target performance portability, Surge exposes
a functional interface consisting of high-level operators and collections for expressing
computations that does not require expert knowledge to generate high-performance
code. Steuwer et al. [2015] describe a system that transforms high-level functional
expressions into OpenCL code using a set of rewrite rules. By exploring the space of
rewrite rules, multiple implementations are generated and autotuned. While the data-
parallel operators and the idea of using autotuning to find a suitable implementation
are similar to that of Surge, there are important differences between the two systems:
First, the rewrite rules in the Steuwer framework target only OpenCL, with the as-
sumption that OpenCL can be used to provide performance portability across current
and future architectures; Surge, in comparison, is not restricted to any single platform.
Also, a new set of rewrite rules must be written by an expert programmer to target
every new platform in the Steuwer framework; Surge, however, greatly simplifies this
process by abstracting the dependence structure of operators in a platform-agnostic
way, as described in Section 4.

8. CONCLUSIONS

This article has presented Surge, a new nested data-parallel programming system. The
Surge programming interface, implemented purely as a C++11 library, decouples high-
level specification of computations from low-level implementation details. The code
generation and autotuning subsystems use this two-level mechanism to systematically
generate code for multiple platforms and tune it with respect to both the architecture
and input dataset. For five benchmarks expressed in Surge, we describe how high-
performance implementations for GPUs and CPUs are automatically generated and
demonstrate performance that is on par with or better than handcrafted reference

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:21

implementations. With the initial framework in place, we plan to add support for more
platforms and also explore compiler-based techniques for operator transformations.

APPENDIX

Listing 8 shows the full source code for the SpMV benchmark, including all headers
and declarations.

1 #include <iostream>
2 #include <ctime>
3 #include <thrust/host_vector.h>

4 #include <thrust/device_vector.h>

5 #include <surge/sequences/sequence.h>

6 #include <surge/operators/map.h>

7 #include <surge/operators/gather.h>

8 #include <surge/operators/reduce.h>

9 #include <surge/operators/nest.h>
10 // CUSP matrix I/0 routines
11 #include "matrix_io.h"
12 // The code generator and autotuner communicate
13 // with the main application via the following
14 // auto-generated file (surge_config.h).
15 #include "surge_config.h"
16 // The behavior of the execute() function
17 // changes based on what is defined in
18 // surge_config.h. So include it later.
19 #include <surge/operators/execute.h>

21 using value_t = double;

22 // Use Thrust’s device_vector for CUDA. On the CPU, change to thrust::host_vector
23 template<typename T>

24 using vector_t = thrust::device_vector<T>;

25

26 int main(int argc, char xargv[])

27 |

28 using namespace surge;

29

30 if(argc !'= 2) {

31 std::cerr << "Usage:_spmv_matrix_market_file\n";

32 exit(-1);

33 }

34 // Use CUSP I/0 routines to read matrix market file

35 using csr_matrix_t = cusp::csr_matrix<int, value_t, cusp::host_memory>;
36 csromatrix_t matrix;

37 read_mtx_as_csr(argv[1l], matrix);

38

39 using index_t = typename csr_matrix_t::index_type;

40 using value_t = typename csr_matrix_t::value_type;

41 const int n_cols = matrix.num_cols;

42 const int n_rows = matrix.num_rows;

43

44 // Create vector on host and populate with random values.

45 thrust::host_vector<value_t> h_vector(n_cols, value_t(0));

46 srand(time(NULL));

47 thrust::generate(h_vector.begin(), h_vector.end(),

48 [1() { return value_t(std::rand()) / value_t(RAND_MAX); });

49

50 // Allocate memory on and copy data to target device.

51 vector_t<index_t> rows(matrix.row_offsets.begin(), matrix.row_offsets.end());
52 vector_t<index_t> cols(matrix.column_indices.begin(), matrix.column_indices.end());
53 vector_t<value_t> vector(h_vector);

54 vector_t<value_t> nzs(matrix.values.begin(), matrix.values.end());
55 vector_t<value_t> result(n_rows, value_t(0));

56

57 // Create views (sequences) for Surge operators.

58 auto s_vector = make_sequence(vector.begin(), vector.end());

59 auto s_row_offsets = make_sequence(rows.begin(), rows.end());

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

47:22 S. Muralidharan et al.

60 auto s_nonzeros = make_sequence(nzs.begin(), nzs.end());

61 auto s_column_indices = make_sequence(cols.begin(), cols.end());
62 auto s_result = make_sequence(result.begin(), result.end());
63

64 // Create nested sequences for matrix and column indices.

65 auto s_matrix = nest(s_nonzeros, s_row_offsets);

66 auto s_indices = nest(s_column_indices, s_row_offsets);

67

68 using row_t = decltype(s_matrix[0]);

69 using index_row_t = decltype(s_indices[0]);

70

71 auto spmv =

72 // Apply dot product across all rows of matrix.

73 // SURGE_LAMBDA_PREFIX expands to __host__ __device__ when compiling with NVCC.
74 map ([=] SURGE_LAMBDA_PREFIX (row_t row, index_row_t indices) {
75 auto mul = [](value_t x, value_t y) { return xxy; };
76 auto plus = []1(value_t x, value_t y) { return x+y; };
77 // Gather elements from vector s_vector

78 auto z = gather(s_vector, indices);

79 // Element-wise multiplication vector with row

80 auto vector_mul = map(mul, row, z);

81 // Sum up elements to obtain dot product

82 return reduce(plus, vector_mul, value_t(0));

83 1,

84 s_matrix, s_indices);

85

86 // Realize SpMV computation

87 execute(spmv, s_result,

88 // Target CUDA. Change to backend::omp for OpenMP.
89 backend: : cuda{}

90);

91 // Use results.

92 %

Listing 8. Full Surge code for SpMV. The platform has been set to CUDA in this example.

ACKNOWLEDGMENTS

We thank NVIDIA Corporation for generous equipment donations and members of the NVIDIA research
group for valuable discussions. We also thank Bryan Catanzaro for contributing to the initial design of Surge.

REFERENCES

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. 2014. OpenTuner: An extensible framework for program autotuning.
In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation (PACT’14).
ACM, 303-316.

Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink, Rodric Rabbah, and Sunil
Shukla. 2012. A compiler and runtime for heterogeneous computing. In Proceedings of the 49th Annual
Design Automation Conference (DAC’12). ACM, 271-276.

Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. 2010. Lime: A java-compatible and
synthesizable language for heterogeneous architectures. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications (OOPSLA’10). ACM,
89-108.

Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC’09). ACM, Article 18.

Nathan Bell and Jared Hoberock. 2011. Thrust: A productivity-oriented library for CUDA. GPU Comput.
Gems Jade Ed. 2 (2011), 359-371.

Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and Adam Shaw. 2013. Data-
only flattening for nested data parallelism. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’13). ACM, 81-92.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

Designing a Tunable Nested Data-Parallel Programming System 47:23

Guy E. Blelloch. 1992. NESL: A Nested Data-Parallel Language. Technical Report CMU-CS-95-170. Carnegie
Mellon University, Pittsburgh, PA.

Kevin J. Brown, HyoukdJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christopher De Sa, Christopher Aberger,
and Kunle Olukotun. 2016. Have abstraction and eat performance, too: Optimized heterogeneous com-
puting with parallel patterns. In Proceedings of the 2016 International Symposium on Code Generation
and Optimization (CGO 2016). ACM, 194-205.

Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle
Olukotun. 2011. A heterogeneous parallel framework for domain-specific languages. In Proceedings of
the 20th Parallel Architectures and Compilation Techniques Conference (PACT’11). ACM, 89-100.

Zoran Budimli¢, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton, Jens Palsberg,
David Peixotto, Vivek Sarkar, Frank Schlimbach, and Sagnak Tagirlar. 2010. Concurrent collections.
Sci. Program. 18, 3—4 (Aug. 2010), 203-217.

Bryan Catanzaro. 2014. GPU K-Means Clustering. Retrieved October 28, 2016 from https:/github.com/
bryancatanzaro/kmeans.

Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011. Copperhead: Compiling an embedded data
parallel language. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP’11). ACM, 47-56.

Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele Keller, and Simon Marlow.
2007. Data parallel haskell: A status report. In Proceedings of the 2007 Workshop on Declarative Aspects
of Multicore Programming (DAMP’07). ACM, 10-18.

Li-Wen Chang, Izzat El Hajj, Christopher Rodrigues, Juan Gémez-Luna, and Wen-mei Hwu. 2016. Efficient
kernel synthesis for performance portable programming. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-49).

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry standard API for shared-memory pro-
gramming. I[EEE Comput. Sci. Eng. 5,1 (1998), 46-55.

Steven Dalton, Nathan Bell, and Michael Garland. 2010. CUSP Library. Retrieved October 28, 2016 from
http://cusplibrary.github.io/.

Tim Davis. 2011. The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011),
1:1-1:25. Issue 1.

Denis Demidov, Karsten Ahnert, Karl Rupp, and Peter Gottschling. 2016. VexCL Symbolic Type. Retrieved
October 28, 2016 from http://vexcl.readthedocs.io/en/latest/symbolic.html.

H. Carter Edwards, Christian Trott, Juan Alday, Jesse Perla, Mauro Bianco, Robin Maffeo, Ben Sander,
and Bryce Lelbach. 2016. Polymorphic multidimensional array reference. ISO/IEC C++ Standards
Committee Paper POOOIR2. Retrieved October 28, 2016 from http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2016/p0009r2.html.

ExMatEx. 2015. DoE Exascale Co-Design Center for Materials in Extreme Environments. Retrieved October
28, 2016 from http://www.exmatex.org.

Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. 2009. Annotation-based empirical perfor-
mance tuning using orio. In Proceedings of the 2014 IEEE 28th International Parallel and Distributed
Processing Symposium (IPDPS’09). IEEE Computer Society, 1-11.

Jared Hoberock. 2016. Working draft, technical specification for C++ extensions for parallelism ver-
sion 2. ISO/IEC C++ Standards Committee Paper N4578 (2016). Retrieved October 28, 2016 from
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4578. html.

Jared Hoberock, Michael Garland, and Olivier Giroux. 2016. An interface for abstracting execution.
ISO/IEC C++ Standards Committee Paper P0058R1 (2016). Retrieved October 28, 2016 from
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0058r1.pdf.

Paul Hudak. 1996. Building domain-specific embedded languages. ACM Comput. Surv. 28, 4es, Article 196
(Dec. 1996).

Intel. 2016. Math Kernel Library. Retrieved October 28, 2016 from https:/software.intel.com/en-us/intel-mkl.

Simon Peyton Jones and Satnam Singh. 2009. A tutorial on parallel and concurrent programming in haskell.
In Proceedings of the 6th International Conference on Advanced Functional Programming (AFP08).
Springer-Verlag, 267-305.

Laxmikant V. Kale and Sanjeev Krishnan. 1993. CHARM++: A portable concurrent object oriented system
based on C++. In Proceedings of the 8th Annual Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA’93). ACM, 91-108.

Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Ben Lippmeier, and Simon Peyton Jones.
2012. Vectorisation avoidance. In Proceedings of the 2012 Haskell Symposium (Haskell’12). ACM, 37-48.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

https://github.com/bryancatanzaro/kmeans
https://github.com/bryancatanzaro/kmeans
http://cusplibrary.github.io/
http://vexcl.readthedocs.io/en/latest/symbolic.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0009r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0009r2.html
http://www.exmatex.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4578.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0058r1.pdf
https://software.intel.com/en-us/intel-mkl

47:24 S. Muralidharan et al.

Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and Ben Lippmeier.
2010. Regular, shape-polymorphic, parallel arrays in haskell. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming (ICFP’10). ACM, 261-272.

Matthias Kretz. 2016. Data-parallel vector types and operations. ISO/IEC C++ Standards Committee Paper
P0214R1 (2016). Retrieved October 28, 2016 from http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2016/p0214r1.pdf.

HyoukdJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Tiark Rompf, and Kunle Olukotun. 2014. Locality-
aware mapping of nested parallel patterns on GPUs. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-47). IEEE Computer Society, 63—74.

Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theor. 28, 2 (Mar. 1982),
129-137.

Duane G. Merrill, ITI. 2011. Allocation-oriented Algorithm Design with Application to GPU Computing. Ph.D.
Dissertation. University of Virginia, Charlottesville, VA. UMI Order Number: AAI 3501820.

Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland, and Bryan Catanzaro. 2014. Nitro:
A framework for adaptive code variant tuning. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium (IPDPS’14). IEEE Computer Society, 501-512.

NVIDIA, Cray, CAPS, and PGI. 2015. The OpenACC Specification version 2.0a. Retrieved October 28, 2016
from http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf.

Shigetoshi Ohshima, Takahiro Katagiri, and Morio Matsumoto. 2014. Performance optimization of SpMV
Using CRS format by considering OpenMP scheduling on CPUs and MIC. In Proceedings of the 8th IEEE
International Symposium on Embedded Multicore/ Manycore SoCs (MCSoc). 253—260.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Hassaan, Rashid Kaleem,
Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and
Xin Sui. 2011. The tao of parallelism in algorithms. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’'11). ACM, 12-25.

Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. 2012. Elixir: A system for synthesizing concur-
rent graph programs. In Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA’12). ACM, 375-394.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. 2013. Halide: A language and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’'13). ACM, 519-530.

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: A pragmatic approach to runtime
code generation and compiled DSLs. In Proceedings of the 9th International Conference on Generative
Programming and Component Engineering (GPCE’10). ACM, 127-136.

Nikolay Sakharnykh. 2013. CoMD-CUDA. Retrieved October 28, 2016 from https:/github.com/
NVIDIA/CoMD-CUDA.

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating performance
portable code using rewrite rules: From high-level functional expressions to high-performance OpenCL
code. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming
(ICFP’15). ACM, New York, NY, 205-217.

Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K Hollingsworth. 2009. A scalable
auto-tuning framework for compiler optimization. In Proceedings of the 2009 IEEE International Parallel
and Distributed Processing Symposium. 1-12.

Vladimir N. Vapnik. 1998. Statistical Learning Theory.
Todd Veldhuizen. 1995. Expression templates. C++ Report 7, 5 (1995), 26-31.

Yongpeng Zhang and F. Mueller. 2012. CuNesl: Compiling nested data-parallel languages for SIMT archi-
tectures. In Proceedings of the 41st International Conference on Parallel Processing (ICPP). 340-349.

Received June 2016; revised September 2016; accepted October 2016

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 47, Publication date: December 2016.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0214r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0214r1.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
https://github.com/NVIDIA/CoMD-CUDA
https://github.com/NVIDIA/CoMD-CUDA

